-
1
-
-
84863337933
-
Photoacoustic tomography: In vivo imaging from organelles to organs
-
L. V. Wang and S. Hu, "Photoacoustic tomography: in vivo imaging from organelles to organs," Science 335(6075), 1458-1462 (2012).
-
(2012)
Science
, vol.335
, Issue.6075
, pp. 1458-1462
-
-
Wang, L.V.1
Hu, S.2
-
2
-
-
82255190668
-
Biomedical photoacoustic imaging
-
P. Beard, "Biomedical photoacoustic imaging," Interface Focus 1(4), 602-631 (2011).
-
(2011)
Interface Focus
, vol.1
, Issue.4
, pp. 602-631
-
-
Beard, P.1
-
3
-
-
84979979902
-
A practical guide to photoacoustic tomography in the life sciences
-
L. V. Wang and J. Yao, "A practical guide to photoacoustic tomography in the life sciences," Nat. Methods 13(8), 627-638 (2016).
-
(2016)
Nat. Methods
, vol.13
, Issue.8
, pp. 627-638
-
-
Wang, L.V.1
Yao, J.2
-
4
-
-
84953335129
-
Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo
-
M. Schwarz et al., "Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo," J. Biophotonics 9(1-2), 55-60 (2016).
-
(2016)
J. Biophotonics
, vol.9
, Issue.1-2
, pp. 55-60
-
-
Schwarz, M.1
-
5
-
-
84959336283
-
A dual-functional benzobisthiadiazole derivative as an effective theranostic agent for near-infrared photoacoustic imaging and photothermal therapy
-
S. Huang et al., "A dual-functional benzobisthiadiazole derivative as an effective theranostic agent for near-infrared photoacoustic imaging and photothermal therapy," J. Mater. Chem. B 4(9), 1696-1703 (2016).
-
(2016)
J. Mater. Chem. B
, vol.4
, Issue.9
, pp. 1696-1703
-
-
Huang, S.1
-
6
-
-
84968813375
-
Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy
-
Y. Lyu et al., "Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy," ACS Nano 10(4), 4472-4481 (2016).
-
(2016)
ACS Nano
, vol.10
, Issue.4
, pp. 4472-4481
-
-
Lyu, Y.1
-
7
-
-
84895925334
-
Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice
-
K. Pu et al., "Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice," Nat. Nanotechnol. 9(3), 233-239 (2014).
-
(2014)
Nat. Nanotechnol.
, vol.9
, Issue.3
, pp. 233-239
-
-
Pu, K.1
-
8
-
-
84856137680
-
Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
-
D. Pan et al., "Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging," Contrast Media Mol. Imaging 6(5), 378-388 (2011).
-
(2011)
Contrast Media Mol. Imaging
, vol.6
, Issue.5
, pp. 378-388
-
-
Pan, D.1
-
9
-
-
77952485885
-
In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths
-
C. Kim, C. Favazza, and L. V. Wang, "In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths," Chem. Rev. 110(5), 2756-2782 (2010).
-
(2010)
Chem. Rev.
, vol.110
, Issue.5
, pp. 2756-2782
-
-
Kim, C.1
Favazza, C.2
Wang, L.V.3
-
10
-
-
69549105594
-
Single-walled carbon nanotubes as a multimodalthermoacoustic and photoacoustic-contrast agent
-
M. Pramanik et al., "Single-walled carbon nanotubes as a multimodalthermoacoustic and photoacoustic-contrast agent," J. Biomed. Opt. 14(3), 034018 (2009).
-
(2009)
J. Biomed. Opt.
, vol.14
, Issue.3
, pp. 034018
-
-
Pramanik, M.1
-
11
-
-
85000541941
-
Near-infrared light-sensitive liposomes for enhanced plasmid DNA transfection
-
C. Wiraja et al., "Near-infrared light-sensitive liposomes for enhanced plasmid DNA transfection," Bioeng. Transl. Med. (2016).
-
(2016)
Bioeng. Transl. Med.
-
-
Wiraja, C.1
-
12
-
-
84964897544
-
Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy
-
Y. Shi et al., "Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy," Biomed. Opt. Express 7(5), 1830 (2016).
-
(2016)
Biomed. Opt. Express
, vol.7
, Issue.5
, pp. 1830
-
-
Shi, Y.1
-
13
-
-
79960517069
-
Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion
-
J. R. Rajian et al., "Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion," Opt. Express 19(15), 14335-14347 (2011).
-
(2011)
Opt. Express
, vol.19
, Issue.15
, pp. 14335-14347
-
-
Rajian, J.R.1
-
14
-
-
79954588650
-
Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons
-
D. Pan et al., "Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons," FASEB J. 25(3), 875-882 (2011).
-
(2011)
FASEB J.
, vol.25
, Issue.3
, pp. 875-882
-
-
Pan, D.1
-
15
-
-
84938596331
-
Opportunities for photoacousticguided drug delivery
-
J. Xia, C. Kim, and J. F. Lovell, "Opportunities for photoacousticguided drug delivery," Curr. Drug Targets 16(6), 571-581 (2015).
-
(2015)
Curr. Drug Targets
, vol.16
, Issue.6
, pp. 571-581
-
-
Xia, J.1
Kim, C.2
Lovell, J.F.3
-
16
-
-
0842279809
-
Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors
-
A. Gabizon and D. Papahadjopoulos, "Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors," Proc. Natl. Acad. Sci. U. S. A. 85(18), 6949-6953 (1988).
-
(1988)
Proc. Natl. Acad. Sci. U. S. A.
, vol.85
, Issue.18
, pp. 6949-6953
-
-
Gabizon, A.1
Papahadjopoulos, D.2
-
17
-
-
0029741953
-
Doxorubicin encapsulated in sterically stabilized liposomes is superior to free drug or drug-containing conventional liposomes at suppressing growth and metastases of human lung tumor xenografts
-
T. Sakakibara et al., "Doxorubicin encapsulated in sterically stabilized liposomes is superior to free drug or drug-containing conventional liposomes at suppressing growth and metastases of human lung tumor xenografts," Cancer Res. 56(16), 3743-3746 (1996).
-
(1996)
Cancer Res.
, vol.56
, Issue.16
, pp. 3743-3746
-
-
Sakakibara, T.1
-
18
-
-
68049142557
-
Clinical overview on lipoplatin™: A successful liposomal formulation of cisplatin
-
T. Boulikas, "Clinical overview on lipoplatin™: a successful liposomal formulation of cisplatin," Expert Opin. Invest. Drugs 18(8), 1197-1218 (2009).
-
(2009)
Expert Opin. Invest. Drugs
, vol.18
, Issue.8
, pp. 1197-1218
-
-
Boulikas, T.1
-
19
-
-
0028356893
-
Clinical use of liposomal and lipid-complexed amphotericin B
-
R. J. S. De Marie and I. Bakker-Woudenberg, "Clinical use of liposomal and lipid-complexed amphotericin B," J. Antimicrob. Chemother. 33(5), 907-916 (1994).
-
(1994)
J. Antimicrob. Chemother.
, vol.33
, Issue.5
, pp. 907-916
-
-
De Marie, R.J.S.1
Bakker-Woudenberg, I.2
-
20
-
-
84880503720
-
Materials characterization of the low temperature sensitive liposome (LTSL): Effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin
-
D. Needham et al., "Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin," Faraday Discuss. 161, 515-534 (2013).
-
(2013)
Faraday Discuss.
, vol.161
, pp. 515-534
-
-
Needham, D.1
-
21
-
-
13844298737
-
The liposomal formulation of doxorubicin
-
S. A. Abraham et al., "The liposomal formulation of doxorubicin," Methods Enzymol. 391, 71-97 (2005).
-
(2005)
Methods Enzymol.
, vol.391
, pp. 71-97
-
-
Abraham, S.A.1
-
22
-
-
46049091776
-
Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells
-
G. Wu et al., "Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells," J. Am. Chem. Soc. 130(26), 8175-8177 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.26
, pp. 8175-8177
-
-
Wu, G.1
-
23
-
-
0034675216
-
Wavelength-programmed solute release from photosensitive liposomes
-
R. H. Bisby, C. Mead, and C. G. Morgan, "Wavelength-programmed solute release from photosensitive liposomes," Biochem. Biophys. Res. Commun. 276(1), 169-173 (2000).
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.276
, Issue.1
, pp. 169-173
-
-
Bisby, R.H.1
Mead, C.2
Morgan, C.G.3
-
24
-
-
84923034649
-
Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation
-
M. Mathiyazhakan et al., "Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation," Colloids Surf. B 126, 569-574 (2015).
-
(2015)
Colloids Surf. B
, vol.126
, pp. 569-574
-
-
Mathiyazhakan, M.1
-
25
-
-
79952828779
-
Wavelength-selective light-induced release from plasmon resonant liposomes
-
S. J. Leung et al., "Wavelength-selective light-induced release from plasmon resonant liposomes," Adv. Funct. Mater. 21(6), 1113-1121 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, Issue.6
, pp. 1113-1121
-
-
Leung, S.J.1
-
26
-
-
84890853918
-
Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells
-
A. K. Rengan et al., "Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells," Nanoscale 6(2), 916-923 (2014).
-
(2014)
Nanoscale
, vol.6
, Issue.2
, pp. 916-923
-
-
Rengan, A.K.1
-
27
-
-
84922814607
-
In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer
-
A. K. Rengan et al., "In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer," Nano Lett. 15(2), 842-848 (2015).
-
(2015)
Nano Lett.
, vol.15
, Issue.2
, pp. 842-848
-
-
Rengan, A.K.1
-
28
-
-
27444434694
-
Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition
-
J. K. Mills and D. Needham, "Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition," Biochim. Biophys. Acta 1716(2), 77-96 (2005).
-
(2005)
Biochim. Biophys. Acta
, vol.1716
, Issue.2
, pp. 77-96
-
-
Mills, J.K.1
Needham, D.2
-
29
-
-
84948740674
-
Performance characterization of lowcost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system
-
P. K. Upputuri and M. Pramanik, "Performance characterization of lowcost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system," Biomed. Opt. Express 6(10), 4118-4129 (2015).
-
(2015)
Biomed. Opt. Express
, vol.6
, Issue.10
, pp. 4118-4129
-
-
Upputuri, P.K.1
Pramanik, M.2
-
30
-
-
84961786935
-
High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system
-
K. Sivasubramanian and M. Pramanik, "High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system," Biomed. Opt. Express 7(2), 312-323 (2016).
-
(2016)
Biomed. Opt. Express
, vol.7
, Issue.2
, pp. 312-323
-
-
Sivasubramanian, K.1
Pramanik, M.2
-
31
-
-
77952418138
-
Fabrication of gold nanoparticles with different morphologies in HEPES buffer
-
R. Chen et al., "Fabrication of gold nanoparticles with different morphologies in HEPES buffer," Rare Met. 29(2), 180-186 (2010).
-
(2010)
Rare Met.
, vol.29
, Issue.2
, pp. 180-186
-
-
Chen, R.1
-
32
-
-
0001095458
-
Metalization of lipid vesicles via electroless plating
-
W. T. Ferrar et al., "Metalization of lipid vesicles via electroless plating," J. Am. Chem. Soc. 110(3), 288-289 (1988).
-
(1988)
J. Am. Chem. Soc.
, vol.110
, Issue.3
, pp. 288-289
-
-
Ferrar, W.T.1
-
34
-
-
84874608859
-
Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model
-
A. Sazgarnia et al., "Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model," J. Ultrasound Med. 32(2), 475-483 (2013).
-
(2013)
J. Ultrasound Med.
, vol.32
, Issue.2
, pp. 475-483
-
-
Sazgarnia, A.1
|