메뉴 건너뛰기




Volumn 8, Issue 1, 2016, Pages

Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

Author keywords

back propagation; Classification; extreme learning machine; fault diagnosis; general regression neural network; probabilistic neural network; self adaptation

Indexed keywords


EID: 85000351106     PISSN: 16878132     EISSN: 16878140     Source Type: Journal    
DOI: 10.1177/1687814015624832     Document Type: Article
Times cited : (120)

References (30)
  • 1
    • 84938490502 scopus 로고    scopus 로고
    • A bearing fault diagnosis method based on the low-dimensional compressed vibration signal
    • Epub ahead of print 6 July
    • Zhang X, Hu N, Hu L, et al. A bearing fault diagnosis method based on the low-dimensional compressed vibration signal. Adv Mech Eng. Epub ahead of print 6 July 2015. DOI: 10.1177/1687814015593442.
    • (2015) Adv Mech Eng
    • Zhang, X.1    Hu, N.2    Hu, L.3
  • 2
    • 84890027379 scopus 로고    scopus 로고
    • Fault prognostic based on hybrid method of state judgment and regression
    • Epub ahead of print 14 November
    • Li X, Qian J, Wang G-G., Fault prognostic based on hybrid method of state judgment and regression. Adv Mech Eng. Epub ahead of print 14 November 2013. DOI: 10.1155/2013/149562.
    • (2013) Adv Mech Eng
    • Li, X.1    Qian, J.2    Wang, G.-G.3
  • 3
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF., Probabilistic neural networks. Neural Networks 1990; 3: 109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 4
    • 85000635890 scopus 로고    scopus 로고
    • On the application of genetic probabilistic neural network and cellular neural networks in precision agriculture
    • Oluleye B, Leisa A, Jinsong L, et al. On the application of genetic probabilistic neural network and cellular neural networks in precision agriculture. Asian J Comput Inf Syst 2014; 2: 90-101.
    • (2014) Asian J Comput Inf Syst , vol.2 , pp. 90-101
    • Oluleye, B.1    Leisa, A.2    Jinsong, L.3
  • 5
    • 0026711368 scopus 로고
    • Improving the convergence of the back-propagation algorithm
    • Van Ooyen A, Nienhuis B,. Improving the convergence of the back-propagation algorithm. Neural Networks 1992; 5: 465-471.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 6
    • 84855257683 scopus 로고    scopus 로고
    • Using artificial neural network for predicting impurity concentration in solid diffusion process under insufficient input parameters
    • Epub ahead of print 4 October
    • Muslih IM, Mansour MA, Ramadan SZ., Using artificial neural network for predicting impurity concentration in solid diffusion process under insufficient input parameters. Adv Mech Eng. Epub ahead of print 4 October 2011. DOI: 10.1155/2011/408524.
    • (2011) Adv Mech Eng
    • Muslih, I.M.1    Mansour, M.A.2    Ramadan, S.Z.3
  • 7
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K., Extreme learning machine: theory and applications. Neurocomputing 2006; 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 84874022475 scopus 로고    scopus 로고
    • An enhanced extreme learning machine based on ridge regression for regression
    • Li G, Niu P., An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 2011; 22: 803-810.
    • (2011) Neural Comput Appl , vol.22 , pp. 803-810
    • Li, G.1    Niu, P.2
  • 10
    • 84865775801 scopus 로고    scopus 로고
    • Dynamic ensemble extreme learning machine based on sample entropy
    • Zhai J-h, Xu H-y, Wang X-z., Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 2012; 16: 1493-1502.
    • (2012) Soft Comput , vol.16 , pp. 1493-1502
    • Zhai, J.-H.1    Xu, H.-Y.2    Wang, X.-Z.3
  • 11
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF., A general regression neural network. IEEE T Neural Networ 1991; 2: 568-576.
    • (1991) IEEE T Neural Networ , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 12
    • 84889263089 scopus 로고    scopus 로고
    • Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box-Jenkins time series models
    • Yip H-l, Fan H, Chiang Y-h., Predicting the maintenance cost of construction equipment: comparison between general regression neural network and Box-Jenkins time series models. Automat Constr 2014; 38: 30-38.
    • (2014) Automat Constr , vol.38 , pp. 30-38
    • Yip, H.-L.1    Fan, H.2    Chiang, Y.-H.3
  • 13
    • 84955730358 scopus 로고    scopus 로고
    • Self-adaptive extreme learning machine
    • Epub ahead of print 21 March
    • Wang G-G, Lu M, Dong Y-Q, et al. Self-adaptive extreme learning machine. Neural Comput Appl. Epub ahead of print 21 March 2015. DOI: 10.1007/s00521-015-1874-3.
    • (2015) Neural Comput Appl
    • Wang, G.-G.1    Lu, M.2    Dong, Y.-Q.3
  • 14
    • 34548245002 scopus 로고    scopus 로고
    • Improved BP neural network for transformer fault diagnosis
    • Sun Y-j, Zhang S, Miao C-x, et al. Improved BP neural network for transformer fault diagnosis. J China Univ Min Tech 2007; 17: 138-142.
    • (2007) J China Univ Min Tech , vol.17 , pp. 138-142
    • Sun, Y.-J.1    Zhang, S.2    Miao, C.-X.3
  • 15
    • 84893838049 scopus 로고    scopus 로고
    • An optimized nearest prototype classifier for power plant fault diagnosis using hybrid particle swarm optimization algorithm
    • Wang X, Ma L, Wang T., An optimized nearest prototype classifier for power plant fault diagnosis using hybrid particle swarm optimization algorithm. Int J Elec Power 2014; 58: 257-265.
    • (2014) Int J Elec Power , vol.58 , pp. 257-265
    • Wang, X.1    Ma, L.2    Wang, T.3
  • 16
    • 84887436885 scopus 로고    scopus 로고
    • A fault diagnosis method of Smart Grid based on rough sets combined with genetic algorithm and Tabu search
    • Sun Q, Wang C, Wang Z, et al. A fault diagnosis method of Smart Grid based on rough sets combined with genetic algorithm and Tabu search. Neural Comput Appl 2012; 23: 2023-2029.
    • (2012) Neural Comput Appl , vol.23 , pp. 2023-2029
    • Sun, Q.1    Wang, C.2    Wang, Z.3
  • 17
    • 84900830830 scopus 로고    scopus 로고
    • Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation
    • Zhao J, Xu Y, Luo F, et al. Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation. Inform Sciences 2014; 275: 13-29.
    • (2014) Inform Sciences , vol.275 , pp. 13-29
    • Zhao, J.1    Xu, Y.2    Luo, F.3
  • 18
    • 77955232331 scopus 로고    scopus 로고
    • Multi-fault classification based on support vector machine trained by chaos particle swarm optimization
    • Tang X, Zhuang L, Cai J, et al. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowl-Based Syst 2010; 23: 486-490.
    • (2010) Knowl-Based Syst , vol.23 , pp. 486-490
    • Tang, X.1    Zhuang, L.2    Cai, J.3
  • 19
    • 84892845165 scopus 로고    scopus 로고
    • A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation
    • Camps Echevarría L, Llanes Santiago O, Hernández Fajardo JA, et al. A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation. Eng Appl Artif Intel 2014; 28: 36-51.
    • (2014) Eng Appl Artif Intel , vol.28 , pp. 36-51
    • Camps Echevarría, L.1    Llanes Santiago, O.2    Hernández Fajardo, J.A.3
  • 20
    • 84902474572 scopus 로고    scopus 로고
    • Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis
    • Vong CM, Wong PK, Wong KI., Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis. Appl Soft Comput 2014; 22: 238-248.
    • (2014) Appl Soft Comput , vol.22 , pp. 238-248
    • Vong, C.M.1    Wong, P.K.2    Wong, K.I.3
  • 21
    • 84906950951 scopus 로고    scopus 로고
    • Multi-objective unsupervised feature selection algorithm utilizing redundancy measure and negative epsilon-dominance for fault diagnosis
    • Xia H, Zhuang J, Yu D., Multi-objective unsupervised feature selection algorithm utilizing redundancy measure and negative epsilon-dominance for fault diagnosis. Neurocomputing 2014; 146: 113-124.
    • (2014) Neurocomputing , vol.146 , pp. 113-124
    • Xia, H.1    Zhuang, J.2    Yu, D.3
  • 22
    • 84939190255 scopus 로고    scopus 로고
    • Two novel proposed discrete wavelet transform and filter based approaches for short-circuit faults detection in power transmission lines
    • Fathabadi H., Two novel proposed discrete wavelet transform and filter based approaches for short-circuit faults detection in power transmission lines. Appl Soft Comput 2015; 36: 375-382.
    • (2015) Appl Soft Comput , vol.36 , pp. 375-382
    • Fathabadi, H.1
  • 23
    • 84920275496 scopus 로고    scopus 로고
    • Power cable fault recognition based on an annealed chaotic competitive learning network
    • Qin X, Wang M, Lin J-S, et al. Power cable fault recognition based on an annealed chaotic competitive learning network. Algorithms 2014; 7: 492-509.
    • (2014) Algorithms , vol.7 , pp. 492-509
    • Qin, X.1    Wang, M.2    Lin, J.-S.3
  • 24
    • 84922152970 scopus 로고    scopus 로고
    • Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm
    • Kang M, Kim J, Kim J-M., Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inform Sciences 2015; 294: 423-438.
    • (2015) Inform Sciences , vol.294 , pp. 423-438
    • Kang, M.1    Kim, J.2    Kim, J.-M.3
  • 26
    • 0036666092 scopus 로고    scopus 로고
    • Genetic algorithm training of Elman neural network in motor fault detection
    • Gao XZ, Ovaska SJ., Genetic algorithm training of Elman neural network in motor fault detection. Neural Comput Appl 2002; 11: 37-44.
    • (2002) Neural Comput Appl , vol.11 , pp. 37-44
    • Gao, X.Z.1    Ovaska, S.J.2
  • 27
    • 84955704339 scopus 로고    scopus 로고
    • Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis
    • Epub ahead of print 5 March
    • Zhao Z, Xu Q, Jia M., Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis. Neural Comput Appl. Epub ahead of print 5 March 2015. DOI: 10.1007/s00521-015-1850-y.
    • (2015) Neural Comput Appl
    • Zhao, Z.1    Xu, Q.2    Jia, M.3
  • 28
    • 84939650729 scopus 로고    scopus 로고
    • Prediction approach of software fault-proneness based on hybrid artificial neural network and quantum particle swarm optimization
    • Jin C, Jin S-W., Prediction approach of software fault-proneness based on hybrid artificial neural network and quantum particle swarm optimization. Appl Soft Comput 2015; 35: 717-725.
    • (2015) Appl Soft Comput , vol.35 , pp. 717-725
    • Jin, C.1    Jin, S.-W.2
  • 29
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E., On estimation of a probability density function and mode. Ann Math Stat 1962; 33: 1065-1076.
    • (1962) Ann Math Stat , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 30
    • 84929698635 scopus 로고    scopus 로고
    • Monarch butterfly optimization
    • Epub ahead of print 19 May
    • Wang G-G, Deb S, Cui Z., Monarch butterfly optimization. Neural Comput Appl. Epub ahead of print 19 May 2015. DOI: 10.1007/s00521-015-1923-y.
    • (2015) Neural Comput Appl
    • Wang, G.-G.1    Deb, S.2    Cui, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.