메뉴 건너뛰기




Volumn 294, Issue , 2015, Pages 423-438

Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm

Author keywords

Acoustic emission; Binary bat algorithm; Dimensionality reduction; Incipient low speed bearing fault diagnosis; Multiclass support vector machines; Wavelet packet transform

Indexed keywords

ACOUSTIC EMISSION TESTING; ACOUSTIC EMISSIONS; DIMENSIONALITY REDUCTION; FAILURE ANALYSIS; FAULT DETECTION; ROLLER BEARINGS; SPEED; SUPPORT VECTOR MACHINES; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 84922152970     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.10.014     Document Type: Article
Times cited : (90)

References (69)
  • 1
    • 84865195317 scopus 로고    scopus 로고
    • Empirical mode decomposition of acoustic signals for diagnosis of faults in gears and rolling element bearings
    • M. Amarnath, and I.R.P. Krishana Empirical mode decomposition of acoustic signals for diagnosis of faults in gears and rolling element bearings IET Sci. Meas. Technol. 6 4 2012 279 287
    • (2012) IET Sci. Meas. Technol. , vol.6 , Issue.4 , pp. 279-287
    • Amarnath, M.1    Krishana, I.R.P.2
  • 2
    • 77957929022 scopus 로고    scopus 로고
    • A multi-objective artificial immune algorithm for parameter optimization in support vector machine
    • I. Aydin, M. Karakose, and E. Akin A multi-objective artificial immune algorithm for parameter optimization in support vector machine Appl. Soft Comput. 11 1 2011 120 129
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 120-129
    • Aydin, I.1    Karakose, M.2    Akin, E.3
  • 3
    • 84876277055 scopus 로고    scopus 로고
    • Ball bearing damage detection using traditional signal processing algorithms
    • I. Bediaga, X. Mendizabal, A. Arnaiz, and J. Munoa Ball bearing damage detection using traditional signal processing algorithms IEEE Instrum. Meas. Mag. 16 2 2013 20 25
    • (2013) IEEE Instrum. Meas. Mag. , vol.16 , Issue.2 , pp. 20-25
    • Bediaga, I.1    Mendizabal, X.2    Arnaiz, A.3    Munoa, J.4
  • 4
    • 84876272050 scopus 로고    scopus 로고
    • An integrated system for machine tool spindle head ball bearing fault detection and diagnosis
    • I. Bediaga, X. Mendizabal, I. Etxaniz, and J. Munoa An integrated system for machine tool spindle head ball bearing fault detection and diagnosis IEEE Instrum. Meas. Mag. 16 2 2013 42 47
    • (2013) IEEE Instrum. Meas. Mag. , vol.16 , Issue.2 , pp. 42-47
    • Bediaga, I.1    Mendizabal, X.2    Etxaniz, I.3    Munoa, J.4
  • 5
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets - Empirical mode decomposition feature extraction and neural network
    • G.F. Bin, J.J. Gao, X.J. Li, and B.S. Dhillon Early fault diagnosis of rotating machinery based on wavelet packets - empirical mode decomposition feature extraction and neural network Mech. Syst. Signal Process. 27 2012 696 711
    • (2012) Mech. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 6
    • 84884504255 scopus 로고    scopus 로고
    • Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition
    • W. Caesarendra, P.B. Kosasih, A.K. Tieu, and B.-K. Choi Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition J. Mech. Sci. Technol. 27 8 2013 2253 2262
    • (2013) J. Mech. Sci. Technol. , vol.27 , Issue.8 , pp. 2253-2262
    • Caesarendra, W.1    Kosasih, P.B.2    Tieu, A.K.3    Choi, B.-K.4
  • 7
    • 84886692745 scopus 로고    scopus 로고
    • Robust diagnosis of rolling element bearings based on classification techniques
    • M. Cococcioni, B. Lazzerini, and S.L. Volpi Robust diagnosis of rolling element bearings based on classification techniques IEEE Trans. Industr. Inf. 9 4 2013 2256 2263
    • (2013) IEEE Trans. Industr. Inf. , vol.9 , Issue.4 , pp. 2256-2263
    • Cococcioni, M.1    Lazzerini, B.2    Volpi, S.L.3
  • 8
    • 84881183566 scopus 로고    scopus 로고
    • Bearing degradation process prediction based on the PCA and optimized LS-SVM model
    • S. Dong, and T. Luo Bearing degradation process prediction based on the PCA and optimized LS-SVM model Measurement 46 9 2013 3143 3152
    • (2013) Measurement , vol.46 , Issue.9 , pp. 3143-3152
    • Dong, S.1    Luo, T.2
  • 9
    • 79952454399 scopus 로고    scopus 로고
    • Condition monitoring of speed controlled induction motors using wavelet packets and discriminant analysis
    • D.G. Ece, and M. Basaran Condition monitoring of speed controlled induction motors using wavelet packets and discriminant analysis Expert Syst. Appl. 38 7 2011 8079 8086
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8079-8086
    • Ece, D.G.1    Basaran, M.2
  • 10
    • 78349312373 scopus 로고    scopus 로고
    • The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing
    • B. Eftekharnejad, M.R. Carrasco, B. Charnley, and D. Mba The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing Mech. Syst. Signal Process. 25 1 2011 266 284
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.1 , pp. 266-284
    • Eftekharnejad, B.1    Carrasco, M.R.2    Charnley, B.3    Mba, D.4
  • 11
    • 84555190640 scopus 로고    scopus 로고
    • Condition monitoring of slow-speed shafts and bearings with acoustic emission
    • E. Elforjani, and D. Mba Condition monitoring of slow-speed shafts and bearings with acoustic emission Int. J. Exp. Mech. 47 2 2011 350 363
    • (2011) Int. J. Exp. Mech. , vol.47 , Issue.2 , pp. 350-363
    • Elforjani, E.1    Mba, D.2
  • 12
    • 71749107746 scopus 로고    scopus 로고
    • Accelerated natural fault diagnosis in slow speed bearings with acoustic emission
    • M. Elforjani, and D. Mba Accelerated natural fault diagnosis in slow speed bearings with acoustic emission Eng. Fract. Mech. 77 1 2010 112 127
    • (2010) Eng. Fract. Mech. , vol.77 , Issue.1 , pp. 112-127
    • Elforjani, M.1    Mba, D.2
  • 13
    • 53849101378 scopus 로고    scopus 로고
    • Natural mechanical degradation measurements in slow speed bearings
    • M. Elforjani, and D. Mba Natural mechanical degradation measurements in slow speed bearings Eng. Fail. Anal. 16 1 2009 521 532
    • (2009) Eng. Fail. Anal. , vol.16 , Issue.1 , pp. 521-532
    • Elforjani, M.1    Mba, D.2
  • 14
    • 80052273989 scopus 로고    scopus 로고
    • Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet
    • K. Feng, Z. Jiang, W. He, and Q. Qin Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet Measurement 44 9 2011 1582 1591
    • (2011) Measurement , vol.44 , Issue.9 , pp. 1582-1591
    • Feng, K.1    Jiang, Z.2    He, W.3    Qin, Q.4
  • 15
    • 79957982384 scopus 로고    scopus 로고
    • A recognition and novelty detection approach based on curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis
    • K. Feng, Z. Jiang, W. He, and B. Ma A recognition and novelty detection approach based on curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis Expert Syst. Appl. 38 10 2011 12721 12729
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 12721-12729
    • Feng, K.1    Jiang, Z.2    He, W.3    Ma, B.4
  • 16
    • 58049174236 scopus 로고    scopus 로고
    • Normalized wavelet packets quantifiers for condition monitoring
    • Y. Feng, and F.S. Schlindwein Normalized wavelet packets quantifiers for condition monitoring Mech. Syst. Signal Process. 23 3 2009 712 723
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 712-723
    • Feng, Y.1    Schlindwein, F.S.2
  • 17
    • 84877675513 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition-based Teager energy spectrum for bearing fault diagnosis
    • Z. Feng, M.J. Zuo, R. Hao, F. Chu, and J. Lee Ensemble empirical mode decomposition-based Teager energy spectrum for bearing fault diagnosis J. Vib. Acoust. 125 3 2013 031013-1 031013-21
    • (2013) J. Vib. Acoust. , vol.125 , Issue.3 , pp. 03101301-03101321
    • Feng, Z.1    Zuo, M.J.2    Hao, R.3    Chu, F.4    Lee, J.5
  • 18
    • 72749100972 scopus 로고    scopus 로고
    • Stator current and motor efficiency as indicators for different types of bearing faults in induction motors
    • L. Frosini, and E. Bassi Stator current and motor efficiency as indicators for different types of bearing faults in induction motors IEEE Trans. Ind. Electron. 57 1 2010 244 251
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.1 , pp. 244-251
    • Frosini, L.1    Bassi, E.2
  • 19
    • 84885579397 scopus 로고    scopus 로고
    • Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition
    • G. Georgoulas, T. Loutas, C.D. Stylios, and V. Kostopoulos Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition Mech. Syst. Signal Process. 41 1-2 2013 510 525
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.12 , pp. 510-525
    • Georgoulas, G.1    Loutas, T.2    Stylios, C.D.3    Kostopoulos, V.4
  • 21
    • 84867674014 scopus 로고    scopus 로고
    • A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals
    • W. Guo, and P.W. Tse A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals J. Sound Vib. 332 2 2013 423 441
    • (2013) J. Sound Vib. , vol.332 , Issue.2 , pp. 423-441
    • Guo, W.1    Tse, P.W.2
  • 22
    • 84859163659 scopus 로고    scopus 로고
    • Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition
    • W. Guo, P.W. Tse, and A. Djordjevich Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition Measurement 45 5 2012 1308 1322
    • (2012) Measurement , vol.45 , Issue.5 , pp. 1308-1322
    • Guo, W.1    Tse, P.W.2    Djordjevich, A.3
  • 23
    • 57749189996 scopus 로고    scopus 로고
    • A new bearing fault detection method in induction machines based on instantaneous power factor
    • A. Ibrahim, M.E. Badaoui, F. Guillet, and F. Bonnardot A new bearing fault detection method in induction machines based on instantaneous power factor IEEE Trans. Ind. Electron. 55 12 2008 4252 4259
    • (2008) IEEE Trans. Ind. Electron. , vol.55 , Issue.12 , pp. 4252-4259
    • Ibrahim, A.1    Badaoui, M.E.2    Guillet, F.3    Bonnardot, F.4
  • 24
    • 77954867120 scopus 로고    scopus 로고
    • Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison
    • F. Immovilli, A. Bellini, R. Rubini, and C. Tassoni Diagnosis of bearing faults in induction machines by vibration or current signals: a critical comparison IEEE Trans. Ind. Appl. 46 4 2010 1350 1359
    • (2010) IEEE Trans. Ind. Appl. , vol.46 , Issue.4 , pp. 1350-1359
    • Immovilli, F.1    Bellini, A.2    Rubini, R.3    Tassoni, C.4
  • 25
    • 84885661664 scopus 로고    scopus 로고
    • Feature extraction based on semi-supervised kernel marginal fisher analysis and its application in bearing fault diagnosis
    • L. Jiang, J. Xuan, and T. Shi Feature extraction based on semi-supervised kernel marginal fisher analysis and its application in bearing fault diagnosis Mech. Syst. Signal Process. 41 1-2 2013 113 126
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.12 , pp. 113-126
    • Jiang, L.1    Xuan, J.2    Shi, T.3
  • 26
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • X. Jin, M. Zhao, T.W.S. Chow, and M. Pecht Motor bearing fault diagnosis using trace ratio linear discriminant analysis IEEE Trans. Industr. Electron. 61 6 2014 2441 2451
    • (2014) IEEE Trans. Industr. Electron. , vol.61 , Issue.6 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.S.3    Pecht, M.4
  • 27
    • 84876134288 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform
    • P.K. Kankar, S.C. Sharma, and S.P. Harsha Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform Neurocomputing 110 2013 9 17
    • (2013) Neurocomputing , vol.110 , pp. 9-17
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 28
    • 79954415606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet transform
    • P.K. Kankar, S.C. Sharma, and S.P. Harsha Rolling element bearing fault diagnosis using wavelet transform Neurocomputing 74 2011 1638 1645
    • (2011) Neurocomputing , vol.74 , pp. 1638-1645
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 29
    • 84979498178 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using autocorrelation and continuous wavelet transform
    • P.K. Kankar, S.C. Sharma, and S.P. Harsha Rolling element bearing fault diagnosis using autocorrelation and continuous wavelet transform J. Vib. Control 17 14 2011 2081 2094
    • (2011) J. Vib. Control , vol.17 , Issue.14 , pp. 2081-2094
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 31
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
    • P. Konar, and P. Chattopadhyay Bearing fault detection of induction motor using wavelet and support vector machines (SVMs) Appl. Soft Comput. 11 6 2011 4203 4211
    • (2011) Appl. Soft Comput. , vol.11 , Issue.6 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 32
    • 77956740804 scopus 로고    scopus 로고
    • Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis
    • E.C.C. Lau, and H.W. Ngan Detection of motor bearing outer raceway defect by wavelet packet transformed motor current signature analysis IEEE Trans. Instrum. Meas. 59 10 2010 2683 2690
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.10 , pp. 2683-2690
    • Lau, E.C.C.1    Ngan, H.W.2
  • 33
    • 84865651011 scopus 로고    scopus 로고
    • An approach based on wavelet packet decomposition and Hilbert-Huang transform (WPD-HHT) for spindle bearings condition monitoring
    • L.-S. Law, J.H. Kim, W.Y.H. Liew, and S.-K. Lee An approach based on wavelet packet decomposition and Hilbert-Huang transform (WPD-HHT) for spindle bearings condition monitoring Mech. Syst. Signal Process. 33 2012 197 211
    • (2012) Mech. Syst. Signal Process. , vol.33 , pp. 197-211
    • Law, L.-S.1    Kim, J.H.2    Liew, W.Y.H.3    Lee, S.-K.4
  • 34
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Y. Lei, J. Lin, Z. He, and M.J. Zuo A review on empirical mode decomposition in fault diagnosis of rotating machinery Mech. Syst. Signal Process. 35 1-2 2013 108 126
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.12 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 35
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Y. Lei, Z. He, and Y. Zi EEMD method and WNN for fault diagnosis of locomotive roller bearings Expert Syst. Appl. 38 6 2011 7334 7341
    • (2011) Expert Syst. Appl. , vol.38 , Issue.6 , pp. 7334-7341
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 36
    • 57049113226 scopus 로고    scopus 로고
    • An extended wavelet spectrum for bearing fault diagnosis
    • J. Liu, W. Wang, and F. Golnaraghi An extended wavelet spectrum for bearing fault diagnosis IEEE Trans. Instrum. Meas. 57 12 2008 2801 2812
    • (2008) IEEE Trans. Instrum. Meas. , vol.57 , Issue.12 , pp. 2801-2812
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 37
    • 80051695713 scopus 로고    scopus 로고
    • Evaluation of multiclass support vector machine classifiers using optimum threshold-based pruning technique
    • J. Manikandan, and B. Venkataramani Evaluation of multiclass support vector machine classifiers using optimum threshold-based pruning technique IET Signal Proc. 5 5 2011 506 513
    • (2011) IET Signal Proc. , vol.5 , Issue.5 , pp. 506-513
    • Manikandan, J.1    Venkataramani, B.2
  • 41
    • 84892373249 scopus 로고    scopus 로고
    • The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines
    • S.A. Niknam, V. Songmene, and Y.H.J. Au The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines Int. J. Adv. Manuf. Technol. 69 9-12 2013 2679 2689
    • (2013) Int. J. Adv. Manuf. Technol. , vol.69 , Issue.912 , pp. 2679-2689
    • Niknam, S.A.1    Songmene, V.2    Au, Y.H.J.3
  • 42
    • 77957298441 scopus 로고    scopus 로고
    • Fault detection based on kernel principal component analysis
    • V.H. Nguyen, and J.-C. Golinval Fault detection based on kernel principal component analysis Eng. Struct. 32 11 2010 3683 3691
    • (2010) Eng. Struct. , vol.32 , Issue.11 , pp. 3683-3691
    • Nguyen, V.H.1    Golinval, J.-C.2
  • 43
    • 43249106518 scopus 로고    scopus 로고
    • Induction motor bearing failure detection and diagnosis: Park and Concordia transform approaches comparative study
    • I.Y. Onel, and M.E.H. Benbouzid Induction motor bearing failure detection and diagnosis: park and Concordia transform approaches comparative study IEEE/ASME Trans. Mechatron. 13 2 2008 257 262
    • (2008) IEEE/ASME Trans. Mechatron. , vol.13 , Issue.2 , pp. 257-262
    • Onel, I.Y.1    Benbouzid, M.E.H.2
  • 44
    • 84875368599 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
    • D.H. Pandya, S.H. Upadhyay, and S.P. Harsha Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN Expert Syst. Appl. 40 10 2013 4137 4145
    • (2013) Expert Syst. Appl. , vol.40 , Issue.10 , pp. 4137-4145
    • Pandya, D.H.1    Upadhyay, S.H.2    Harsha, S.P.3
  • 45
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • M.D. Prieto, G. Cirrincione, A.G. Espinosa, J.A. Ortega, and H. Henao Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks IEEE Trans. Industr. Electron. 30 8 2013 3398 3407
    • (2013) IEEE Trans. Industr. Electron. , vol.30 , Issue.8 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3    Ortega, J.A.4    Henao, H.5
  • 46
    • 77249173699 scopus 로고    scopus 로고
    • Application of mother wavelet functions for automatic gear and bearing fault diagnosis
    • J. Rafiee, M.A. Fafiee, and P.W. Tse Application of mother wavelet functions for automatic gear and bearing fault diagnosis Expert Syst. Appl. 37 6 2010 4568 4579
    • (2010) Expert Syst. Appl. , vol.37 , Issue.6 , pp. 4568-4579
    • Rafiee, J.1    Fafiee, M.A.2    Tse, P.W.3
  • 47
    • 84866598130 scopus 로고    scopus 로고
    • Early classification of bearing faults using morphological operators and fuzzy inference
    • A.S. Raj, and N. Murali Early classification of bearing faults using morphological operators and fuzzy inference IEEE Trans. Industr. Electron. 60 2 2013 567 574
    • (2013) IEEE Trans. Industr. Electron. , vol.60 , Issue.2 , pp. 567-574
    • Raj, A.S.1    Murali, N.2
  • 48
    • 77955923868 scopus 로고    scopus 로고
    • BGSA: Binary gravitational search algorithm
    • E. Rashedi, H. Nezamabadi-pour, and S. Saryzdi BGSA: binary gravitational search algorithm Nat. Comput. 9 3 2010 727 745
    • (2010) Nat. Comput. , vol.9 , Issue.3 , pp. 727-745
    • Rashedi, E.1    Nezamabadi-Pour, H.2    Saryzdi, S.3
  • 49
    • 85008025524 scopus 로고    scopus 로고
    • Sensitivity analysis of k-fold cross validation in prediction error estimation
    • J.D. Rodriguez, A. Perez, and J.A. Lozano Sensitivity analysis of k-fold cross validation in prediction error estimation IEEE Trans. Pattern Anal. Mach. Intell. 32 3 2010 569 575
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.3 , pp. 569-575
    • Rodriguez, J.D.1    Perez, A.2    Lozano, J.A.3
  • 50
    • 84883296618 scopus 로고    scopus 로고
    • Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets
    • J. Seshadrinath, and B. Singh Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets IEEE Trans. Power Electron. 29 2 2014 936 945
    • (2014) IEEE Trans. Power Electron. , vol.29 , Issue.2 , pp. 936-945
    • Seshadrinath, J.1    Singh, B.2
  • 51
    • 84877754137 scopus 로고    scopus 로고
    • Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
    • A. Soualhi, G. Clerc, and H. Razik Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique IEEE Trans. Industr. Electron. 60 9 2013 4053 4062
    • (2013) IEEE Trans. Industr. Electron. , vol.60 , Issue.9 , pp. 4053-4062
    • Soualhi, A.1    Clerc, G.2    Razik, H.3
  • 52
    • 84860443821 scopus 로고    scopus 로고
    • Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs
    • I. Steinwart, and C. Scovel Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs Constr. Approx. 35 3 2012 363 417
    • (2012) Constr. Approx. , vol.35 , Issue.3 , pp. 363-417
    • Steinwart, I.1    Scovel, C.2
  • 53
    • 77953139252 scopus 로고    scopus 로고
    • Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement
    • W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement Mech. Syst. Signal Process. 24 5 2010 1458 1472
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.5 , pp. 1458-1472
    • Su, W.1    Wang, F.2    Zhu, H.3    Zhang, Z.4    Guo, Z.5
  • 54
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • N. Tandon, and A. Chaudhary A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings Tribol. Int. 32 8 1999 469 480
    • (1999) Tribol. Int. , vol.32 , Issue.8 , pp. 469-480
    • Tandon, N.1    Chaudhary, A.2
  • 55
    • 67949102010 scopus 로고    scopus 로고
    • Adjustable-speed drive bearing-fault detection via wavelet packet decomposition
    • K. Teotrakool, M.J. Devaney, and L. Eren Adjustable-speed drive bearing-fault detection via wavelet packet decomposition IEEE Trans. Instrum. Meas. 58 8 2009 2747 2754
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , Issue.8 , pp. 2747-2754
    • Teotrakool, K.1    Devaney, M.J.2    Eren, L.3
  • 56
    • 70749108497 scopus 로고    scopus 로고
    • Fault diagnosis of low speed bearing based on acoustic emission signal and multiclass relevance vector machine
    • A. Widodo, B.-S. Yang, E.Y. Kim, A.C.C. Tan, and J. Mathew Fault diagnosis of low speed bearing based on acoustic emission signal and multiclass relevance vector machine Nondestruct. Test. Eval. 24 4 2009 313 328
    • (2009) Nondestruct. Test. Eval. , vol.24 , Issue.4 , pp. 313-328
    • Widodo, A.1    Yang, B.-S.2    Kim, E.Y.3    Tan, A.C.C.4    Mathew, J.5
  • 59
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R. Yan, R.X. Gao, and X. Chen Wavelets for fault diagnosis of rotary machines: a review with applications Signal Process. 96 2014 1 15
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 60
    • 0021576214 scopus 로고
    • Application of acoustic emission technique to detection of rolling bearing failure
    • T. Yoshioka, and T. Fujiwara Application of acoustic emission technique to detection of rolling bearing failure Am. Soc. Mech. Eng. 14 1984 55 76
    • (1984) Am. Soc. Mech. Eng. , vol.14 , pp. 55-76
    • Yoshioka, T.1    Fujiwara, T.2
  • 61
    • 84863014249 scopus 로고    scopus 로고
    • Local and nonlocal preserving projection for bearing defect classification and performance assessment
    • J. Yu Local and nonlocal preserving projection for bearing defect classification and performance assessment IEEE Trans. Industr. Electron. 59 5 2012 2363 2376
    • (2012) IEEE Trans. Industr. Electron. , vol.59 , Issue.5 , pp. 2363-2376
    • Yu, J.1
  • 62
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • X. Zhang, and J. Zhou Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines Mech. Syst. Signal Process. 41 1-2 2013 127 140
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.12 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 63
    • 84891602223 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearings via discriminative subspace learning: Visualization and classification
    • M. Zhao, X. Jin, Z. Zhang, and B. Li Fault diagnosis of rolling element bearings via discriminative subspace learning: visualization and classification Expert Syst. Appl. 41 7 2014 3391 3401
    • (2014) Expert Syst. Appl. , vol.41 , Issue.7 , pp. 3391-3401
    • Zhao, M.1    Jin, X.2    Zhang, Z.3    Li, B.4
  • 64
    • 84881311030 scopus 로고    scopus 로고
    • Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis
    • J. Zheng, J. Cheng, and Y. Yang Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis Mech. Syst. Signal Process. 40 1 2013 136 153
    • (2013) Mech. Syst. Signal Process. , vol.40 , Issue.1 , pp. 136-153
    • Zheng, J.1    Cheng, J.2    Yang, Y.3
  • 65
    • 68249142790 scopus 로고    scopus 로고
    • Incipient bearing fault detection via motor stator current noise cancellation using wiener filter
    • W. Zhou, B. Lu, T.G. Habetler, and R.G. Harley Incipient bearing fault detection via motor stator current noise cancellation using wiener filter IEEE Trans. Ind. Appl. 45 4 2009 1309 1317
    • (2009) IEEE Trans. Ind. Appl. , vol.45 , Issue.4 , pp. 1309-1317
    • Zhou, W.1    Lu, B.2    Habetler, T.G.3    Harley, R.G.4
  • 66
    • 57849121743 scopus 로고    scopus 로고
    • Bearing fault detection via stator current noise cancellation and statistical control
    • W. Zhou, T.G. Habetler, and R.G. Harley Bearing fault detection via stator current noise cancellation and statistical control IEEE Trans. Industr. Electron. 55 12 2008 4260 4269
    • (2008) IEEE Trans. Industr. Electron. , vol.55 , Issue.12 , pp. 4260-4269
    • Zhou, W.1    Habetler, T.G.2    Harley, R.G.3
  • 67
    • 79951579369 scopus 로고    scopus 로고
    • A novel fault diagnosis system using pattern classification on kernel FDA subspace
    • Z.-B. Zhu, and Z.-H. Song A novel fault diagnosis system using pattern classification on kernel FDA subspace Expert Syst. Appl. 38 6 2011 6895 6905
    • (2011) Expert Syst. Appl. , vol.38 , Issue.6 , pp. 6895-6905
    • Zhu, Z.-B.1    Song, Z.-H.2
  • 68
    • 77949491282 scopus 로고    scopus 로고
    • Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis
    • M. Zvokelj, S. Zupan, and I. Prebil Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis Mech. Syst. Signal Process. 24 4 2010 1049 1067
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.4 , pp. 1049-1067
    • Zvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 69
    • 79960045420 scopus 로고    scopus 로고
    • Non-linear multivariate and multiscale monitoring and signal denosing strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
    • M. Zvokelj, S. Zupan, and I. Prebil Non-linear multivariate and multiscale monitoring and signal denosing strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method Mech. Syst. Signal Process 25 7 2011 2631 2653
    • (2011) Mech. Syst. Signal Process , vol.25 , Issue.7 , pp. 2631-2653
    • Zvokelj, M.1    Zupan, S.2    Prebil, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.