메뉴 건너뛰기




Volumn 227, Issue 7, 2013, Pages 1544-1553

Multi-steps degradation process prediction for bearing based on improved back propagation neural network

Author keywords

Bearing; Degradation process prediction; Improved back propagation neural network; Principal component analysis

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; DEGRADATION PREDICTIONS; DEGRADATION PROCESS; EMBEDDING DIMENSIONS; IMPROVED BACK PROPAGATION NEURAL NETWORK; MULTI-FEATURES FUSIONS; SPACE CONSTRUCTIONS; TIME FREQUENCY DOMAIN;

EID: 84883383725     PISSN: 09544062     EISSN: 20412983     Source Type: Journal    
DOI: 10.1177/0954406212462520     Document Type: Article
Times cited : (15)

References (29)
  • 1
    • 77955428535 scopus 로고    scopus 로고
    • Predicting remaining useful life of rotating machinery based artificial neural network
    • Mahamad AK, Saon S and Hiyama T. Predicting remaining useful life of rotating machinery based artificial neural network. Comput Math Appl 2010; 60: 1078-1087.
    • (2010) Comput Math Appl , vol.60 , pp. 1078-1087
    • Mahamad, A.K.1    Saon, S.2    Hiyama, T.3
  • 2
    • 80055081674 scopus 로고    scopus 로고
    • Degradation process prediction for rotational machinery based on hybrid intelligent model
    • Du S, Lv J and Xi L. Degradation process prediction for rotational machinery based on hybrid intelligent model. Robot Comput Integr Manuf 2012; 28(2): 190-207.
    • (2012) Robot Comput Integr Manuf , vol.28 , Issue.2 , pp. 190-207
    • Du, S.1    Lv, J.2    Xi, L.3
  • 3
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • Qiu H, Lee J, Lin J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv Eng Inform 2003; 17: 127-140.
    • (2003) Adv Eng Inform , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3
  • 4
    • 29144480902 scopus 로고    scopus 로고
    • Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test
    • Kar C and Mohanty AR. Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test. J Sound Vib 2006; 290: 337-368.
    • (2006) J Sound Vib , vol.290 , pp. 337-368
    • Kar, C.1    Mohanty, A.R.2
  • 5
    • 2942659638 scopus 로고    scopus 로고
    • Residual life predictions from vibration-based degradation signals: A neural network approach
    • Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 2004; 51: 694-700.
    • (2004) IEEE Trans Ind Electron , vol.51 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3
  • 6
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
    • Huang R, Xi L, Li X, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech Syst Signal Process 2007; 21: 193-207.
    • (2007) Mech Syst Signal Process , vol.21 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3
  • 7
    • 33947210318 scopus 로고    scopus 로고
    • Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics
    • Ocak H, Loparo KA and Discenzo FM. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics. J Sound Vib 2007; 302: 951-961.
    • (2007) J Sound Vib , vol.302 , pp. 951-961
    • Ocak, H.1    Loparo, K.A.2    Discenzo, F.M.3
  • 8
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Malhi A and Gao RX. PCA-based feature selection scheme for machine defect classification. IEEE Trans Instrum Meas 2004; 53: 1517-1525.
    • (2004) IEEE Trans Instrum Meas , vol.53 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 9
    • 67849106386 scopus 로고    scopus 로고
    • A novel method for machine performance degradation assessment based on Exed cycle features test
    • Liao L and Lee J. A novel method for machine performance degradation assessment based on Exed cycle features test. J Sound Vib 2009; 326: 894-908.
    • (2009) J Sound Vib , vol.326 , pp. 894-908
    • Liao, L.1    Lee, J.2
  • 11
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine AKS, Lin D and Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 2006; 20: 1483-1510.
    • (2006) Mech Syst Signal Process , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 12
    • 57749179286 scopus 로고    scopus 로고
    • Fatigue life prediction using fracture mechanics methods
    • Ghidini T and Donne C. Fatigue life prediction using fracture mechanics methods. Eng Fract Mech 2009; 75: 134-148.
    • (2009) Eng Fract Mech , vol.75 , pp. 134-148
    • Ghidini, T.1    Donne, C.2
  • 14
    • 77953323622 scopus 로고    scopus 로고
    • A neural network approach for remaining useful life prediction utilizing both failure and suspension histories
    • Tian Z, Wong L and Safaei N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mech Syst Signal Process 2010; 24: 1542-1555.
    • (2010) Mech Syst Signal Process , vol.24 , pp. 1542-1555
    • Tian, Z.1    Wong, L.2    Safaei, N.3
  • 15
    • 78649978380 scopus 로고    scopus 로고
    • Combination of probability approach and support vector machine towards machine health prognostics
    • Caesarendra W, Widodob A and Yang B-S. Combination of probability approach and support vector machine towards machine health prognostics. Probab Eng Mech 2011; 26: 165-173.
    • (2011) Probab Eng Mech , vol.26 , pp. 165-173
    • Caesarendra, W.1    Widodob, A.2    Yang, B.-S.3
  • 16
    • 33746216902 scopus 로고    scopus 로고
    • Intelligent prognostics tools and e-maintenance
    • Lee J, Ni J, Djurdjanovic D, et al. Intelligent prognostics tools and e-maintenance. Comput Ind 2006; 57: 476-489.
    • (2006) Comput Ind , vol.57 , pp. 476-489
    • Lee, J.1    Ni, J.2    Djurdjanovic, D.3
  • 17
    • 2942659638 scopus 로고    scopus 로고
    • Residual life, predictions from vibration-based degradation signals: A neural network approach
    • Gebraeel N, Lawley MA and Liu R. Residual life, predictions from vibration-based degradation signals: a neural network approach. IEEE Trans Ind Electron 2004; 51(3): 694-700.
    • (2004) IEEE Trans Ind Electron , vol.51 , Issue.3 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.A.2    Liu, R.3
  • 18
    • 33750542098 scopus 로고    scopus 로고
    • A novel algorithm for text categorization using improved back-propagation neural network
    • Li CH and Park SC. A novel algorithm for text categorization using improved back-propagation neural network. In: Proceedings of FSKD 2006, LNAI 4223, 2006, pp. 452-460.
    • (2006) Proceedings of FSKD 2006, LNAI 4223 , pp. 452-460
    • Li, C.H.1    Park, S.C.2
  • 19
    • 70350351568 scopus 로고    scopus 로고
    • Text categorization based on combination of modified back propagation neural network and latent semantic analysis
    • Wang W and Yu B. Text categorization based on combination of modified back propagation neural network and latent semantic analysis. Neural Comput Appl 2009; 18: 875-881.
    • (2009) Neural Comput Appl , vol.18 , pp. 875-881
    • Wang, W.1    Yu, B.2
  • 20
    • 0034375291 scopus 로고    scopus 로고
    • Bearing diagnostics based on pattern recognition of statistical parameters
    • Xi F, Sun Q and Krishnappa G. Bearing diagnostics based on pattern recognition of statistical parameters. J Vibr Contr 2000; 6: 75-92.
    • (2000) J Vibr Contr , vol.6 , pp. 75-92
    • Xi, F.1    Sun, Q.2    Krishnappa, G.3
  • 21
    • 41649101903 scopus 로고    scopus 로고
    • Machine condition prognosis based on regression trees and one-step-ahead prediction
    • Tran VT, Yanga B-S and Oh M-S. Machine condition prognosis based on regression trees and one-step-ahead prediction. Mech Syst Signal Process 2008; 22: 1179-1193.
    • (2008) Mech Syst Signal Process , vol.22 , pp. 1179-1193
    • Tran, V.T.1    Yanga, B.-S.2    Oh, M.-S.3
  • 22
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser AM and Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986; 33: 1134-1140.
    • (1986) Phys Rev A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 23
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997; 110: 43-50.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.1
  • 24
    • 60849139057 scopus 로고    scopus 로고
    • Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems
    • Tran VT, Yang B-S and Tan ACC. Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems. Exp Syst Appl 2009; 36: 9378-9387.
    • (2009) Exp Syst Appl , vol.36 , pp. 9378-9387
    • Tran, V.T.1    Yang, B.-S.2    Tan, A.C.C.3
  • 25
    • 33747879841 scopus 로고    scopus 로고
    • A comparison of direct and iterated multi-step AR methods for forecasting macroeconomic time series
    • Marcellino M, Stock J and Watson MW. A comparison of direct and iterated multi-step AR methods for forecasting macroeconomic time series. J Econom 2006; 135: 499-526.
    • (2006) J Econom , vol.135 , pp. 499-526
    • Marcellino, M.1    Stock, J.2    Watson, M.W.3
  • 26
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • In: DA Rand and LS Young (eds) New York: Springer-Verlag
    • Takens F. Detecting strange attractors in turbulence. In: DA Rand and LS Young (eds) Dynamical systems and turbulence. New York: Springer-Verlag, 1981, pp. 366-381.
    • (1981) Dynamical Systems and Turbulence , pp. 366-381
    • Takens, F.1
  • 27
    • 78651346442 scopus 로고    scopus 로고
    • Rexnord Technical Services, IMS, University of Cincinnati, NASA Ames Prognostics Data Repository., NASA Ames, Moffett Field, CA (accessed 9 May)
    • Lee J, Qiu H, Yu G, et al. Rexnord Technical Services, "Bearing Data Set". IMS, University of Cincinnati, NASA Ames Prognostics Data Repository. http://ti.arc.nasa.gov/project/prognosticdata-repository, NASA Ames, Moffett Field, CA (accessed 9 May 2009).
    • (2009) Bearing Data Set
    • Lee, J.1    Qiu, H.2    Yu, G.3
  • 28
    • 69549124173 scopus 로고    scopus 로고
    • Artificial neural networks for prediction of response to chemoradiation in ht29 xenografts
    • Kakar M, Seierstad T, Roe K, et al. Artificial neural networks for prediction of response to chemoradiation in ht29 xenografts. Int J Radiat Oncol Biol Phys 2009; 75(2): 506-511.
    • (2009) Int J Radiat Oncol Biol Phys , vol.75 , Issue.2 , pp. 506-511
    • Kakar, M.1    Seierstad, T.2    Roe, K.3
  • 29
    • 80052059189 scopus 로고    scopus 로고
    • Research on bearing life prediction based on support vector machine and its application
    • Sun C, Zhang ZS and He ZJ. Research on bearing life prediction based on support vector machine and its application. J Phys: Conf Ser 2011; 305: 1-9.
    • (2011) J Phys: Conf ser , vol.305 , pp. 1-9
    • Sun, C.1    Zhang, Z.S.2    He, Z.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.