메뉴 건너뛰기




Volumn 73, Issue 2, 2017, Pages 431-440

Inference in randomized trials with death and missingness

Author keywords

Composite endpoint; Death truncated data; Missing data; Sensitivity analysis

Indexed keywords

ANALYSIS STRATEGIES; CLINICAL TRIAL; COMPOSITE ENDPOINT; DEATH-TRUNCATED DATA; MISSING DATA; MISSING DATA IMPUTATIONS; NON SMALL CELL LUNG CANCER; RANDOMIZED TRIAL; TRUNCATED DATA;

EID: 84995470837     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12594     Document Type: Article
Times cited : (23)

References (36)
  • 2
    • 79953837790 scopus 로고    scopus 로고
    • A simple method for principal strata effects when the outcome has been truncated due to death
    • Chiba, Y. and VanderWeele, T. J. (2011). A simple method for principal strata effects when the outcome has been truncated due to death. American Journal of Epidemiology 173, 745–751.
    • (2011) American Journal of Epidemiology , vol.173 , pp. 745-751
    • Chiba, Y.1    VanderWeele, T.J.2
  • 3
    • 0030539336 scopus 로고    scopus 로고
    • Markov Chain Monte Carloconvergence diagnostics A comparative review
    • Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association 91, 883–904.
    • (1996) Journal ofthe American Statistical Association , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 5
    • 0035403247 scopus 로고    scopus 로고
    • Transforming self-rated health and the SF-36 scales to include death to improve interpretability
    • Diehr, P., Patrick, D. L., Spertus, J., Kiefe, C. I., Donell, M., and Fihn, S. D. (2001). Transforming self-rated health and the SF-36 scales to include death to improve interpretability. Medical Care 39, 670–680.
    • (2001) Medical Care , vol.39 , pp. 670-680
    • Diehr, P.1    Patrick, D.L.2    Spertus, J.3    Kiefe, C.I.4    Donell, M.5    Fihn, S.D.6
  • 6
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58, 21–29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 7
    • 15044360979 scopus 로고    scopus 로고
    • An esitmator for treatment comparisons among survivors in randomized trials
    • Hayden, D., Pauler, D. K., and Schoenfeld, D. (2005). An esitmator for treatment comparisons among survivors in randomized trials. Biometrics 61, 305–310.
    • (2005) Biometrics , vol.61 , pp. 305-310
    • Hayden, D.1    Pauler, D.K.2    Schoenfeld, D.3
  • 8
    • 77954944281 scopus 로고    scopus 로고
    • Basic concepts and methods for joint models of longitudinal and survival data
    • Ibrahim, J. G., Chu, H., and Chen, L. M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology 28, 2796–2801.
    • (2010) Journal of Clinical Oncology , vol.28 , pp. 2796-2801
    • Ibrahim, J.G.1    Chu, H.2    Chen, L.M.3
  • 9
    • 12344312472 scopus 로고    scopus 로고
    • Treatment comparisons for a partially categorical outcome applied to a biomarker with assay limit
    • Joshua Chen, Y., Gould, A. L., and Nessly, M. L. (2005). Treatment comparisons for a partially categorical outcome applied to a biomarker with assay limit. Statistics in Medicine 24, 211–228.
    • (2005) Statistics in Medicine , vol.24 , pp. 211-228
    • Joshua Chen, Y.1    Gould, A.L.2    Nessly, M.L.3
  • 10
    • 22144491220 scopus 로고    scopus 로고
    • Directly parameterized regressionconditioning on being alive Analysis of longitudinal data truncatedby deaths
    • Kurland, B. F. and Heagerty, P. J. (2005). Directly parameterized regression conditioning on being alive: Analysis of longitudinal data truncated by deaths. Biostatistics 6, 241–258.
    • (2005) Biostatistics , vol.6 , pp. 241-258
    • Kurland, B.F.1    Heagerty, P.J.2
  • 11
    • 77951247088 scopus 로고    scopus 로고
    • Longitudinal data with follow-up truncated by death match the analysis method to research aims
    • Kurland, B. F., Johnson, L. L., Egleston, B. L., and Diehr, P. H. (2009). Longitudinal data with follow-up truncated by death: match the analysis method to research aims. Statistical Science 24, 211–222.
    • (2009) Statistical Science , vol.24 , pp. 211-222
    • Kurland, B.F.1    Johnson, L.L.2    Egleston, B.L.3    Diehr, P.H.4
  • 12
    • 0032860357 scopus 로고    scopus 로고
    • Worst-rank score analysis with informatively missing observations in clinical trials
    • Lachin, J. M. (1999). Worst-rank score analysis with informatively missing observations in clinical trials. Controlled Clinical Trials 20, 408–422.
    • (1999) Controlled Clinical Trials , vol.20 , pp. 408-422
    • Lachin, J.M.1
  • 13
  • 14
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R. J. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471–483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.1
  • 15
    • 0002322469 scopus 로고
    • On a test of whether one of tworandom variables is stochastically larger than the other
    • Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics 18, 50–60.
    • (1947) The Annals of Mathematical Statistics , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 16
    • 10344225877 scopus 로고    scopus 로고
    • Sensitivity analysis of longitudinal binary data with non-monotone missing values
    • Minini, P. and Chavance, M. (2004). Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics 5, 531–544.
    • (2004) Biostatistics , vol.5 , pp. 531-544
    • Minini, P.1    Chavance, M.2
  • 17
    • 0003606575 scopus 로고
    • A generic approach to posterior integration and Gibbs sampling
    • Purdue University
    • Muller, P. (1991). A generic approach to posterior integration and Gibbs sampling. Technical report, Purdue University.
    • (1991) Technical report
    • Muller, P.1
  • 18
    • 79952576381 scopus 로고    scopus 로고
    • Washington, DC The NationalAcademies Press
    • National Research Council Panel on Handling Missing Data in Clinical Trials (2010). The Prevention and Treatment of Missing Data in Clinical Trials. Washington, DC: The National Academies Press
    • (2010) The Prevention andTreatment of Missing Data in Clinical Trials
  • 19
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, R. M. (2003). Slice sampling. Annals of Statistics 31, 705–741.
    • (2003) Annals of Statistics , vol.31 , pp. 705-741
    • Neal, R.M.1
  • 22
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias andunmeasured confounding in missing data and causal inferencemodels. In, (eds)
    • New York Springer-Verlag
    • Robins, J., Rotnitzky, A., and Scharfstein, D. (2000). Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In Statistical Models for Epidemiology, E. Halloran (eds), 1–94. New York: Springer-Verlag.
    • (2000) Statistical Models for Epidemiology , pp. 1-94
    • Robins, J.1    Rotnitzky, A.2    Scharfstein, D.3    Halloran, E.4
  • 23
    • 0031014353 scopus 로고    scopus 로고
    • Non-response models for the analysis of non-monotone ignorable missing data
    • Robins, J. M. and Gill, R. D. (1997). Non-response models for the analysis of non-monotone ignorable missing data. Statistics in Medicine 16, 39–56.
    • (1997) Statistics in Medicine , vol.16 , pp. 39-56
    • Robins, J.M.1    Gill, R.D.2
  • 24
    • 0001198982 scopus 로고
    • The consequences of adjustment for a concomitant variable that has been affected by the treatment
    • Rosenbaum, P. R. (1984). The consequences of adjustment for a concomitant variable that has been affected by the treatment. Journal of the Royal Statistical Society, Series A 147, 656–666.
    • (1984) Journal of the Royal Statistical Society, Series A , vol.147 , pp. 656-666
    • Rosenbaum, P.R.1
  • 26
    • 0035102566 scopus 로고    scopus 로고
    • A sensitivity analysis methodology for randomized trials with potentially non-ignorable cause-specific censoring
    • Rotnitzky, A., Scharfstein, D., Su, T., and Robins, J. (2001a). A sensitivity analysis methodology for randomized trials with potentially non-ignorable cause-specific censoring. Biometrics 57, 103–113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.2    Su, T.3    Robins, J.4
  • 27
    • 0035102566 scopus 로고    scopus 로고
    • Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
    • Rotnitzky, A., Scharfstein, D., Su, T.-L., and Robins, J. (2001b). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103–113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.2    Su, T.-L.3    Robins, J.4
  • 28
    • 2942658011 scopus 로고    scopus 로고
    • .Incorporating prior beliefs about selection bias into the analysisof randomized trials with missing outcomes
    • Scharfstein, D., Daniels, M., and Robins, J. (2003). Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 4, 495.
    • (2003) Biostatistics , vol.4 , pp. 495
    • Scharfstein, D.1    Daniels, M.2    Robins, J.3
  • 29
    • 84961340701 scopus 로고    scopus 로고
    • Global sensitivity analysis for repeated measures studies with informative drop-out
    • Scharfstein, D., McDermott, A., Olson, W., and F, W. (2014). Global sensitivity analysis for repeated measures studies with informative drop-out. Statistics in Biopharmaceutical Research 6, 338–348.
    • (2014) Statistics in Biopharmaceutical Research , vol.6 , pp. 338-348
    • Scharfstein, D.1    McDermott, A.2    Olson, W.3
  • 30
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for non-ignorable drop-out using semiparametric non-response models (with discussion)
    • Scharfstein, D., Rotnitzky, A., and Robins, J. (1999). Adjusting for non-ignorable drop-out using semiparametric non-response models (with discussion). Journal of the American Statistical Association 94, 1096–1146.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1146
    • Scharfstein, D.1    Rotnitzky, A.2    Robins, J.3
  • 31
    • 40849094464 scopus 로고    scopus 로고
    • Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes
    • Shardell, M. and Miller, R. R. (2008). Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes. Statistics in Medicine 27, 1008–1025.
    • (2008) Statistics in Medicine , vol.27 , pp. 1008-1025
    • Shardell, M.1    Miller, R.R.2
  • 32
    • 84958576820 scopus 로고    scopus 로고
    • Anamorelinin patients with non-small-cell lung cancer and cachexia (romana 1and romana 2) Results from two randomised, double-blind
    • phase 3trials
    • Temel, J. S., Abernethy, A. P., Currow, D. C., Friend, J., Duus, E. M., Yan, Y., et al. (2016). Anamorelin in patients with non-small-cell lung cancer and cachexia (romana 1 and romana 2): Results from two randomised, double-blind, phase 3 trials. The Lancet Oncology 17, 519–531.
    • (2016) The Lancet Oncology , vol.17 , pp. 519-531
    • Temel, J.S.1    Abernethy, A.P.2    Currow, D.C.3    Friend, J.4    Duus, E.M.5    Yan, Y.6
  • 34
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data An overview
    • Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica 14, 809–834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 35
    • 37549032131 scopus 로고    scopus 로고
    • Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse
    • Vansteelandt, S., Rotnitzky, A., and Robins, J. (2007). Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse. Biometrika 94, 841–860.
    • (2007) Biometrika , vol.94 , pp. 841-860
    • Vansteelandt, S.1    Rotnitzky, A.2    Robins, J.3
  • 36
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330–339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.