-
1
-
-
84942536273
-
Graphene-based photocatalysts for solar-fuel generation
-
[1] Xiang, Q., Cheng, B., Yu, J., Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54 (2015), 11350–11366.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 11350-11366
-
-
Xiang, Q.1
Cheng, B.2
Yu, J.3
-
3
-
-
85027957371
-
Polymeric photocatalysts based on graphitic carbon nitride
-
[3] Cao, S., Low, J., Yu, J., Jaroniec, M., Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27 (2015), 2150–2176.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2150-2176
-
-
Cao, S.1
Low, J.2
Yu, J.3
Jaroniec, M.4
-
4
-
-
84978431889
-
Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion
-
[4] Wu, K., Lian, T., Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 45 (2016), 3781–3810.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 3781-3810
-
-
Wu, K.1
Lian, T.2
-
5
-
-
84966280406
-
Hierarchical photocatalysts
-
[5] Li, X., Yu, J., Jaroniec, M., Hierarchical photocatalysts. Chem. Soc. Rev. 45 (2016), 2603–2636.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 2603-2636
-
-
Li, X.1
Yu, J.2
Jaroniec, M.3
-
6
-
-
84908199187
-
2 photocatalysis: mechanisms and materials
-
2 photocatalysis: mechanisms and materials. Chem. Rev. 114 (2014), 9919–9986.
-
(2014)
Chem. Rev.
, vol.114
, pp. 9919-9986
-
-
Schneider, J.1
Matsuoka, M.2
Takeuchi, M.3
Zhang, J.4
Horiuchi, Y.5
Anpo, M.6
Bahnemann, D.W.7
-
8
-
-
84892631642
-
2 nanospheres
-
2 nanospheres. J. Alloy. Compd. 591 (2014), 52–57.
-
(2014)
J. Alloy. Compd.
, vol.591
, pp. 52-57
-
-
Tang, H.1
Zhang, D.2
Tang, G.3
Ji, X.4
Li, C.5
Yan, X.6
Wu, Q.7
-
9
-
-
84863493867
-
A review on the visible light active titanium dioxide photocatalysts for environmental applications
-
[9] Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H., Dionysiou, D.D., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B – Environ. 125 (2012), 331–349.
-
(2012)
Appl. Catal. B – Environ.
, vol.125
, pp. 331-349
-
-
Pelaez, M.1
Nolan, N.T.2
Pillai, S.C.3
Seery, M.K.4
Falaras, P.5
Kontos, A.G.6
Dunlop, P.S.M.7
Hamilton, J.W.J.8
Byrne, J.A.9
O'Shea, K.10
Entezari, M.H.11
Dionysiou, D.D.12
-
11
-
-
84905750514
-
New insights into the mechanism of visible light photocatalysis
-
[11] Banerjee, S., Pillai, S.C., Falaras, P., O'shea, K.E., Byrne, J.A., Dionysiou, D.D., New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5 (2014), 2543–2554.
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2543-2554
-
-
Banerjee, S.1
Pillai, S.C.2
Falaras, P.3
O'shea, K.E.4
Byrne, J.A.5
Dionysiou, D.D.6
-
12
-
-
84927517408
-
2 heterojunction photocatalyst under simulated solar light irradiation
-
2 heterojunction photocatalyst under simulated solar light irradiation. Appl. Surf. Sci. 325 (2015), 1–12.
-
(2015)
Appl. Surf. Sci.
, vol.325
, pp. 1-12
-
-
Wang, X.1
Utsumi, M.2
Yang, Y.3
Li, D.4
Zhao, Y.5
Zhang, Z.6
Feng, C.7
Sugiura, N.8
Cheng, J.J.9
-
13
-
-
79951469937
-
2 aggregates by embedding carbon nanotubes as electron-transfer channel
-
2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13 (2011), 3491–3501.
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 3491-3501
-
-
Yu, J.1
Ma, T.2
Liu, S.3
-
14
-
-
84878374423
-
A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity
-
[14] Devi, L.G., Kavitha, R., A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B – Environ. 140 (2013), 559–587.
-
(2013)
Appl. Catal. B – Environ.
, vol.140
, pp. 559-587
-
-
Devi, L.G.1
Kavitha, R.2
-
16
-
-
84948704764
-
2 photoanodes with fluorinated self-assembled monolayers for highly efficient dye-sensitized solar cells
-
2 photoanodes with fluorinated self-assembled monolayers for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7 (2015), 25741–25747.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 25741-25747
-
-
Wooh, S.1
Kim, T.-Y.2
Song, D.3
Lee, Y.-G.4
Lee, T.K.5
Bergmann, V.W.6
Weber, S.A.7
Bisquert, J.8
Kang, Y.S.9
Char, K.10
-
17
-
-
84883823658
-
2 composite hollow microspheres
-
2 composite hollow microspheres. Ceram. Int. 39 (2013), 8633–8640.
-
(2013)
Ceram. Int.
, vol.39
, pp. 8633-8640
-
-
Tang, H.1
Zhang, D.2
Tang, G.3
Ji, X.4
Li, W.5
Li, C.6
Yang, X.7
-
18
-
-
84944318275
-
2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties
-
2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355 (2015), 921–929.
-
(2015)
Appl. Surf. Sci.
, vol.355
, pp. 921-929
-
-
Xie, J.1
Yang, Y.2
He, H.3
Cheng, D.4
Mao, M.5
Jiang, Q.6
Song, L.7
Xiong, J.8
-
19
-
-
84863499450
-
Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures
-
[19] Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W., Lian, T., Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 134 (2012), 10337–10340.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 10337-10340
-
-
Wu, K.1
Zhu, H.2
Liu, Z.3
Rodríguez-Córdoba, W.4
Lian, T.5
-
20
-
-
84857695659
-
Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design
-
[20] Kamat, P.V., Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3 (2012), 663–672.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 663-672
-
-
Kamat, P.V.1
-
21
-
-
84863712141
-
Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer
-
[21] Kamat, P.V., Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45 (2012), 1906–1915.
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 1906-1915
-
-
Kamat, P.V.1
-
22
-
-
84922882013
-
Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light
-
[22] Zhang, D., Tang, H., Wang, Y., Wu, K., Huang, H., Tang, G., Yang, J., Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light. Appl. Surf. Sci. 319 (2014), 306–311.
-
(2014)
Appl. Surf. Sci.
, vol.319
, pp. 306-311
-
-
Zhang, D.1
Tang, H.2
Wang, Y.3
Wu, K.4
Huang, H.5
Tang, G.6
Yang, J.7
-
23
-
-
84939419398
-
Synergistic effect of dual electron-cocatalysts for enhanced photocatalytic activity: rGO as electron-transfer mediator and Fe(III) as oxygen-reduction active site
-
[23] Yu, H., Tian, J., Chen, F., Wang, P., Wang, X., Synergistic effect of dual electron-cocatalysts for enhanced photocatalytic activity: rGO as electron-transfer mediator and Fe(III) as oxygen-reduction active site. Sci. Rep., 5, 2015, 10.1038/srep13083.
-
(2015)
Sci. Rep.
, vol.5
-
-
Yu, H.1
Tian, J.2
Chen, F.3
Wang, P.4
Wang, X.5
-
24
-
-
84938303945
-
2-ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis
-
2-ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis. Ind. Eng. Chem. Res. 54 (2015), 7226–7232.
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, pp. 7226-7232
-
-
Pan, L.1
Shen, G.2
Zhang, J.3
Wei, X.4
Wang, L.5
Zou, J.6
Zhang, X.7
-
27
-
-
84921766061
-
2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization and performance
-
2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization and performance. Langmuir 31 (2015), 1203–1209.
-
(2015)
Langmuir
, vol.31
, pp. 1203-1209
-
-
Qin, N.1
Liu, Y.2
Wu, W.3
Shen, L.4
Chen, X.5
Li, Z.6
Wu, L.7
-
28
-
-
84979492974
-
2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition
-
2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition. J. Chem. Technol. Biotechnol. 91 (2016), 2198–2204.
-
(2016)
J. Chem. Technol. Biotechnol..
, vol.91
, pp. 2198-2204
-
-
García-Mendoza, C.1
Oros-Ruiz, S.2
Hernández-Gordillo, A.3
López, R.4
Jácome-Acatitla, G.5
Calderón, H.A.6
Gómez, R.7
-
29
-
-
84924267916
-
2 Evolution
-
2 Evolution. ACS Appl. Mater. Interfaces 7 (2015), 4533–4540.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 4533-4540
-
-
Lian, Z.1
Xu, P.2
Wang, W.3
Zhang, D.4
Xiao, S.5
Li, X.6
Li, G.7
-
32
-
-
84958156804
-
2 spheres with high photocatalytic activity under visible light irradiation
-
2 spheres with high photocatalytic activity under visible light irradiation. Appl. Catal. B – Environ. 188 (2016), 342–350.
-
(2016)
Appl. Catal. B – Environ.
, vol.188
, pp. 342-350
-
-
Chen, X.1
Wei, J.2
Hou, R.3
Liang, Y.4
Xie, Z.5
Zhu, Y.6
Zhang, X.7
Wang, H.8
-
33
-
-
84893439261
-
2 nanosheets with reactive {001} facets to enhance the UV-and visible-light photocatalytic activity
-
2 nanosheets with reactive {001} facets to enhance the UV-and visible-light photocatalytic activity. J. Hazard. Mater. 268 (2014), 216–223.
-
(2014)
J. Hazard. Mater.
, vol.268
, pp. 216-223
-
-
Gu, L.1
Wang, J.2
Zou, Z.3
Han, X.4
-
35
-
-
84869018933
-
Graphene-like carbon nitride nanosheets for improved photocatalytic activities
-
[35] Niu, P., Zhang, L., Liu, G., Cheng, H., Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22 (2012), 4763–4770.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 4763-4770
-
-
Niu, P.1
Zhang, L.2
Liu, G.3
Cheng, H.4
-
36
-
-
84893488799
-
4 and its high performance of photocatalytic disinfection under visible light irradiation
-
4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B – Environ. 152 (2014), 46–50.
-
(2014)
Appl. Catal. B – Environ.
, vol.152
, pp. 46-50
-
-
Zhao, H.1
Yu, H.2
Quan, X.3
Chen, S.4
Zhang, Y.5
Zhao, H.6
Wang, H.7
-
39
-
-
84934312511
-
4-modified CdS heterostructure with enhanced photocatalytic activity
-
4-modified CdS heterostructure with enhanced photocatalytic activity. Appl. Surf. Sci. 358 (2015), 385–392.
-
(2015)
Appl. Surf. Sci.
, vol.358
, pp. 385-392
-
-
Yu, H.1
Chen, F.2
Chen, F.3
Wang, X.4
-
41
-
-
84928503347
-
Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution
-
[41] Yang, X., Tang, H., Xu, J., Antonietti, M., Shalom, M., Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. ChemSusChem 8 (2015), 1350–1358.
-
(2015)
ChemSusChem
, vol.8
, pp. 1350-1358
-
-
Yang, X.1
Tang, H.2
Xu, J.3
Antonietti, M.4
Shalom, M.5
-
42
-
-
84979578303
-
3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity
-
3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci., 2016, 10.1016/j.apsusc.2016.07.021.
-
(2016)
Appl. Surf. Sci.
-
-
Tang, H.1
Chang, S.2
Tang, G.3
Liang, W.4
-
45
-
-
79851506480
-
2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior
-
2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 133 (2010), 933–940.
-
(2010)
J. Am. Chem. Soc.
, vol.133
, pp. 933-940
-
-
Ye, J.1
Liu, W.2
Cai, J.3
Chen, S.4
Zhao, X.5
Zhou, H.6
Qi, L.7
-
46
-
-
84955291754
-
2 crystal facets and its visible-light photocatalytic activity
-
2 crystal facets and its visible-light photocatalytic activity. Int. J. Hydrog. Energy 41 (2016), 3877–3887.
-
(2016)
Int. J. Hydrog. Energy
, vol.41
, pp. 3877-3887
-
-
Ma, J.1
Tan, X.2
Yu, T.3
Li, X.4
-
47
-
-
84939825249
-
4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation
-
4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Res. Chem. Intermed. 42 (2016), 3609–3624.
-
(2016)
Res. Chem. Intermed.
, vol.42
, pp. 3609-3624
-
-
Wu, Y.1
Tao, L.2
Zhao, J.3
Yue, X.4
Deng, W.5
Li, Y.6
Wang, C.7
-
48
-
-
84892562935
-
2 mesoporous microspheres with enhanced photocatalytic activity
-
2 mesoporous microspheres with enhanced photocatalytic activity. Mater. Lett. 118 (2014), 192–195.
-
(2014)
Mater. Lett.
, vol.118
, pp. 192-195
-
-
Tang, G.1
Zhang, D.2
Zhao, L.3
Zhang, M.4
Tang, H.5
Huang, H.6
Li, C.7
-
49
-
-
84861801722
-
Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation
-
[49] Singh, J.A., Overbury, S.H., Dudney, N.J., Li, M., Veith, G.M., Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2 (2012), 1138–1146.
-
(2012)
ACS Catal.
, vol.2
, pp. 1138-1146
-
-
Singh, J.A.1
Overbury, S.H.2
Dudney, N.J.3
Li, M.4
Veith, G.M.5
-
51
-
-
63149157953
-
Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature
-
[51] Yang, S.J., Cho, J.H., Oh, G.H., Nahm, K.S., Park, C.R., Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon 47 (2009), 1585–1591.
-
(2009)
Carbon
, vol.47
, pp. 1585-1591
-
-
Yang, S.J.1
Cho, J.H.2
Oh, G.H.3
Nahm, K.S.4
Park, C.R.5
-
52
-
-
80054733962
-
2 nanocrystals leads to high photocatalytic efficiency
-
2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133 (2011), 16414–16417.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 16414-16417
-
-
Kong, M.1
Li, Y.2
Chen, X.3
Tian, T.4
Fang, P.5
Zheng, F.6
Zhao, X.7
-
54
-
-
84925016165
-
4 nanosheets with much enhanced photocatalytic activity under visible light
-
4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 292 (2015), 79–89.
-
(2015)
J. Hazard. Mater.
, vol.292
, pp. 79-89
-
-
Li, Y.1
Wang, J.2
Yang, Y.3
Zhang, Y.4
He, D.5
An, Q.6
Cao, G.7
-
55
-
-
84907676823
-
2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation
-
2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260 (2015), 117–125.
-
(2015)
Chem. Eng. J.
, vol.260
, pp. 117-125
-
-
Tong, Z.1
Yang, D.2
Xiao, T.3
Tian, Y.4
Jiang, Z.5
-
56
-
-
84880029186
-
2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants
-
2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B – Environ. 142 (2013), 718–728.
-
(2013)
Appl. Catal. B – Environ.
, vol.142
, pp. 718-728
-
-
Sridharan, K.1
Jang, E.2
Park, T.J.3
-
58
-
-
84878630661
-
4 composites with enhanced photocatalytic activity
-
4 composites with enhanced photocatalytic activity. Dalton Trans. 42 (2013), 8606–8616.
-
(2013)
Dalton Trans.
, vol.42
, pp. 8606-8616
-
-
Huang, L.1
Xu, H.2
Li, Y.3
Li, H.4
Cheng, X.5
Xia, J.6
Xu, Y.7
Cai, G.8
-
59
-
-
84978154090
-
2 by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis
-
2 by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis. RSC Adv. 6 (2016), 63117–63130.
-
(2016)
RSC Adv.
, vol.6
, pp. 63117-63130
-
-
Tang, H.1
Chang, S.2
Wu, K.3
Tang, G.4
Fu, Y.5
Liu, Q.6
Yang, X.7
-
60
-
-
84896458958
-
4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants
-
4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2 (2014), 5340–5351.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 5340-5351
-
-
Di, J.1
Xia, J.2
Yin, S.3
Xu, H.4
Xu, L.5
Xu, Y.6
He, M.7
Li, H.8
-
61
-
-
84894027703
-
4/CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation
-
4/CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. Appl. Surf. Sci. 295 (2014), 164–172.
-
(2014)
Appl. Surf. Sci.
, vol.295
, pp. 164-172
-
-
Jiang, F.1
Yan, T.2
Chen, H.3
Sun, A.4
Xu, C.5
Wang, X.6
-
62
-
-
84913592854
-
4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria
-
4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl. Catal. B – Environ. 166 (2015), 231–240.
-
(2015)
Appl. Catal. B – Environ.
, vol.166
, pp. 231-240
-
-
Yang, X.1
Qin, J.2
Jiang, Y.3
Chen, K.4
Yan, X.5
Zhang, D.6
Li, R.7
Tang, H.8
-
63
-
-
84880799503
-
Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes
-
[63] Wu, K., Song, N., Liu, Z., Zhu, H., Rodríguez-Córdoba, W., Lian, T., Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes. J. Phys. Chem. A 117 (2013), 7561–7570.
-
(2013)
J. Phys. Chem. A
, vol.117
, pp. 7561-7570
-
-
Wu, K.1
Song, N.2
Liu, Z.3
Zhu, H.4
Rodríguez-Córdoba, W.5
Lian, T.6
-
64
-
-
84939207299
-
Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
-
[64] Wu, K., Chen, J., McBride, J., Lian, T., Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349 (2015), 632–635.
-
(2015)
Science
, vol.349
, pp. 632-635
-
-
Wu, K.1
Chen, J.2
McBride, J.3
Lian, T.4
-
65
-
-
84905580502
-
All-solid-state Z-scheme photocatalytic systems
-
[65] Zhou, P., Yu, J., Jaroniec, M., All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26 (2014), 4920–4935.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4920-4935
-
-
Zhou, P.1
Yu, J.2
Jaroniec, M.3
|