-
1
-
-
84908179384
-
Composite titanium dioxide nanomaterials
-
Dahl, M.; Liu, Y.; Yin, Y. Composite titanium dioxide nanomaterials Chem. Rev. 2014, 114, 9853 10.1021/cr400634p
-
(2014)
Chem. Rev.
, vol.114
, pp. 9853
-
-
Dahl, M.1
Liu, Y.2
Yin, Y.3
-
2
-
-
34247516340
-
ZnO-nanostructures, defects, and devices
-
Schmidt-Mende, L.; MacManus-Driscoll, J. L. ZnO-nanostructures, defects, and devices Mater. Today 2007, 10, 40 10.1016/S1369-7021(07)70078-0
-
(2007)
Mater. Today
, vol.10
, pp. 40
-
-
Schmidt-Mende, L.1
MacManus-Driscoll, J.L.2
-
4
-
-
80955144235
-
One-dimensional ZnO nanostructures: Solution growth and functional properties
-
Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: solution growth and functional properties Nano Res. 2011, 4, 1013 10.1007/s12274-011-0160-7
-
(2011)
Nano Res.
, vol.4
, pp. 1013
-
-
Xu, S.1
Wang, Z.L.2
-
5
-
-
84906081400
-
Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells
-
Xu, J.; Chen, Z.; Zapien, J. A.; Lee, C.-S.; Zhang, W. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells Adv. Mater. 2014, 26, 5337 10.1002/adma.201400403
-
(2014)
Adv. Mater.
, vol.26
, pp. 5337
-
-
Xu, J.1
Chen, Z.2
Zapien, J.A.3
Lee, C.-S.4
Zhang, W.5
-
7
-
-
84924311193
-
2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance
-
2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance J. Am. Chem. Soc. 2015, 137, 2975 10.1021/ja512047k
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2975
-
-
Wang, S.1
Pan, L.2
Song, J.-J.3
Mi, W.4
Zou, J.-J.5
Wang, L.6
Zhang, X.7
-
8
-
-
84904750749
-
Undoped ZnO abundant with metal vacancies
-
Pan, L.; Wang, S.; Mi, W.; Song, J.; Zou, J.-J.; Wang, L.; Zhang, X. Undoped ZnO abundant with metal vacancies Nano Energy 2014, 9, 71 10.1016/j.nanoen.2014.06.029
-
(2014)
Nano Energy
, vol.9
, pp. 71
-
-
Pan, L.1
Wang, S.2
Mi, W.3
Song, J.4
Zou, J.-J.5
Wang, L.6
Zhang, X.7
-
9
-
-
0001766244
-
Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide
-
Matthews, R. W. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide J. Catal. 1986, 97, 565 10.1016/0021-9517(86)90028-X
-
(1986)
J. Catal.
, vol.97
, pp. 565
-
-
Matthews, R.W.1
-
10
-
-
33847087142
-
Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders
-
Izumi, I.; Dunn, W. W.; Wilbourn, K. O.; Fan, F.-R. F.; Bard, A. J. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders J. Phys. Chem. 1980, 84, 3207 10.1021/j100461a015
-
(1980)
J. Phys. Chem.
, vol.84
, pp. 3207
-
-
Izumi, I.1
Dunn, W.W.2
Wilbourn, K.O.3
Fan, F.-R.F.4
Bard, A.J.5
-
11
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis Chem. Rev. 1995, 95, 69 10.1021/cr00033a004
-
(1995)
Chem. Rev.
, vol.95
, pp. 69
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
13
-
-
84892147135
-
2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity
-
2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity J. Am. Chem. Soc. 2014, 136, 458 10.1021/ja410994f
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 458
-
-
Bian, Z.1
Tachikawa, T.2
Zhang, P.3
Fujitsuka, M.4
Majima, T.5
-
14
-
-
84900565071
-
2 hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables
-
2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables Ind. Eng. Chem. Res. 2014, 53, 7847 10.1021/ie403460d
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 7847
-
-
Eskandarloo, H.1
Badiei, A.2
Behnajady, M.A.3
-
15
-
-
84911920354
-
2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: Towards intimate integration of 1D-1D hybrid nanostructures
-
2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures Nanoscale 2014, 6, 14950 10.1039/C4NR04886E
-
(2014)
Nanoscale
, vol.6
-
-
Xiao, F.-X.1
Hung, S.-F.2
Tao, H.B.3
Miao, J.4
Yang, H.B.5
Liu, B.6
-
17
-
-
84921674784
-
2 nanowires as photoanodes for performance enhanced dye-sensitized solar cells
-
2 nanowires as photoanodes for performance enhanced dye-sensitized solar cells J. Mater. Chem. A 2014, 2, 16867 10.1039/C4TA03445G
-
(2014)
J. Mater. Chem. A
, vol.2
-
-
Ulusoy, T.G.1
Ghobadi, A.2
Okyay, A.K.3
-
18
-
-
84899426628
-
2 core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties
-
2 core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties J. Mater. Chem. A 2014, 2, 7313 10.1039/c4ta00455h
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7313
-
-
Wang, R.1
Tan, H.2
Zhao, Z.3
Zhang, G.4
Song, L.5
Dong, W.6
Sun, Z.7
-
20
-
-
84879766860
-
2 nanosheets
-
2 nanosheets Chem. Commun. 2013, 49, 6593 10.1039/c3cc42152j
-
(2013)
Chem. Commun.
, vol.49
, pp. 6593
-
-
Pan, L.1
Zou, J.-J.2
Wang, S.3
Huang, Z.-F.4
Yu, A.5
Wang, L.6
Zhang, X.7
-
21
-
-
77953141144
-
2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells
-
2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells Adv. Mater. 2010, 22, 2329 10.1002/adma.200903219
-
(2010)
Adv. Mater.
, vol.22
, pp. 2329
-
-
Park, K.1
Zhang, Q.2
Garcia, B.B.3
Zhou, X.4
Jeong, Y.-H.5
Cao, G.6
-
22
-
-
84155162550
-
2O cocatalyst
-
2O cocatalyst Appl. Catal., B 2012, 111-112, 326 10.1016/j.apcatb.2011.10.015
-
(2012)
Appl. Catal., B
, vol.111-112
, pp. 326
-
-
Yu, H.1
Liu, R.2
Wang, X.3
Wang, P.4
Yu, J.5
-
23
-
-
84890817146
-
2 quantum dots loaded on MCM-41
-
2 quantum dots loaded on MCM-41 Chem. Commun. 2014, 50, 988 10.1039/C3CC47752E
-
(2014)
Chem. Commun.
, vol.50
, pp. 988
-
-
Pan, L.1
Wang, S.2
Zou, J.-J.3
Huang, Z.-F.4
Wang, L.5
Zhang, X.6
-
24
-
-
84884275961
-
2 nanobelt/ZnO nanorod heterogeneous nanostructure: An efficient photoanode for water splitting
-
2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting ACS Appl. Mater. Interfaces 2013, 5, 8314 10.1021/am402154k
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 8314
-
-
Pan, K.1
Dong, Y.2
Zhou, W.3
Pan, Q.4
Xie, Y.5
Xie, T.6
Tian, G.7
Wang, G.8
-
25
-
-
84906239186
-
2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination
-
2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination ACS Appl. Mater. Interfaces 2014, 6, 12153 10.1021/am501379m
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
-
-
Hernández, S.1
Cauda, V.2
Chiodoni, A.3
Dallorto, S.4
Sacco, A.5
Hidalgo, D.6
Celasco, E.7
Pirri, C.F.8
-
26
-
-
84901019223
-
2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition
-
2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition Nanoscale 2014, 6, 5735 10.1039/c3nr06665g
-
(2014)
Nanoscale
, vol.6
, pp. 5735
-
-
Kayaci, F.1
Vempati, S.2
Ozgit-Akgun, C.3
Donmez, I.4
Biyikli, N.5
Uyar, T.6
-
27
-
-
84905841706
-
Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density
-
Kayaci, F.; Vempati, S.; Donmez, I.; Biyikli, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density Nanoscale 2014, 6, 10224 10.1039/C4NR01887G
-
(2014)
Nanoscale
, vol.6
-
-
Kayaci, F.1
Vempati, S.2
Donmez, I.3
Biyikli, N.4
Uyar, T.5
-
28
-
-
84884528960
-
2 hybrid
-
2 hybrid Appl. Catal., B 2014, 147, 167 10.1016/j.apcatb.2013.08.038
-
(2014)
Appl. Catal., B
, vol.147
, pp. 167
-
-
Huang, Z.-F.1
Zou, J.-J.2
Pan, L.3
Wang, S.4
Zhang, X.5
Wang, L.6
-
30
-
-
34249794286
-
Gold sponges prepared via hydrothermally activated self-assembly of Au nanoparticles
-
Zhang, Y. X.; Zeng, H. C. Gold sponges prepared via hydrothermally activated self-assembly of Au nanoparticles J. Phys. Chem. C 2007, 111, 6970 10.1021/jp071481c
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 6970
-
-
Zhang, Y.X.1
Zeng, H.C.2
-
31
-
-
84908884074
-
Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress
-
Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress Nanoscale 2014, 6, 14044 10.1039/C4NR05245E
-
(2014)
Nanoscale
, vol.6
-
-
Huang, Z.-F.1
Pan, L.2
Zou, J.-J.3
Zhang, X.4
Wang, L.5
-
32
-
-
77958070469
-
Semiconductor-mediated photodegradation of pollutants under visible-light irradiation
-
Chen, C. C.; Ma, W. H.; Zhao, J. C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation Chem. Soc. Rev. 2010, 39, 4206 10.1039/b921692h
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 4206
-
-
Chen, C.C.1
Ma, W.H.2
Zhao, J.C.3
-
33
-
-
0032529594
-
2 particles
-
2 particles Environ. Sci. Technol. 1998, 32, 2394 10.1021/es9707926
-
(1998)
Environ. Sci. Technol.
, vol.32
, pp. 2394
-
-
Zhao, J.1
Wu, T.2
Wu, K.3
Oikawa, K.4
Hidaka, H.5
Serpone, N.6
-
35
-
-
77949292577
-
Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41
-
Zou, J.-J.; Liu, Y.; Pan, L.; Wang, L.; Zhang, X. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41 Appl. Catal., B 2010, 95, 439 10.1016/j.apcatb.2010.01.024
-
(2010)
Appl. Catal., B
, vol.95
, pp. 439
-
-
Zou, J.-J.1
Liu, Y.2
Pan, L.3
Wang, L.4
Zhang, X.5
-
36
-
-
1442312184
-
Norbornadiene-quadricyclane as an abiotic system for the storage of solar energy
-
Dubonosov, A. D.; Bren, V. A.; Chernoivanov, V. A. Norbornadiene-quadricyclane as an abiotic system for the storage of solar energy Russ. Chem. Rev. 2002, 71, 917 10.1070/RC2002v071n11ABEH000745
-
(2002)
Russ. Chem. Rev.
, vol.71
, pp. 917
-
-
Dubonosov, A.D.1
Bren, V.A.2
Chernoivanov, V.A.3
-
37
-
-
3142707338
-
Kinetics of catalytic isomerization of quadricyclane to norbornadiene using near infrared absorption spectroscopy: Conversion rate and diffusion motion in heterogeneous reaction
-
Fan, H.-F.; Chin, T.-L.; Lin, K.-C. Kinetics of catalytic isomerization of quadricyclane to norbornadiene using near infrared absorption spectroscopy: conversion rate and diffusion motion in heterogeneous reaction J. Phys. Chem. B 2004, 108, 9364 10.1021/jp040131c
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 9364
-
-
Fan, H.-F.1
Chin, T.-L.2
Lin, K.-C.3
-
38
-
-
84908179468
-
A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel
-
Pan, L.; Feng, R.; Peng, H.; E, X.-t.-f.; Zou, J.-J.; Wang, L.; Zhang, X. A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel RSC Adv. 2014, 4, 50998 10.1039/C4RA08868A
-
(2014)
RSC Adv.
, vol.4
-
-
Pan, L.1
Feng, R.2
Peng, H.3
E, X.-T.-F.4
Zou, J.-J.5
Wang, L.6
Zhang, X.7
-
40
-
-
4544235448
-
2 surfaces: Principles, mechanisms, and selected results
-
2 surfaces: principles, mechanisms, and selected results Chem. Rev. 1995, 95, 735 10.1021/cr00035a013
-
(1995)
Chem. Rev.
, vol.95
, pp. 735
-
-
Linsebigler, A.L.1
Lu, G.2
Yates, J.T.3
-
41
-
-
84908179380
-
2 phases: Bulk, surfaces, and nanomaterials
-
2 phases: bulk, surfaces, and nanomaterials Chem. Rev. 2014, 114, 9708 10.1021/cr500055q
-
(2014)
Chem. Rev.
, vol.114
, pp. 9708
-
-
De Angelis, F.1
Di Valentin, C.2
Fantacci, S.3
Vittadini, A.4
Selloni, A.5
-
42
-
-
84875464580
-
2 by nonmetal doping and water-mediated dye sensitization
-
2 by nonmetal doping and water-mediated dye sensitization Appl. Surf. Sci. 2013, 268, 252 10.1016/j.apsusc.2012.12.074
-
(2013)
Appl. Surf. Sci.
, vol.268
, pp. 252
-
-
Pan, L.1
Zou, J.-J.2
Wang, S.3
Huang, Z.-F.4
Zhang, X.5
Wang, L.6
|