-
1
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
2
-
-
84994570246
-
An active learning based approach for effective video annotation and retrieval
-
M. Chatterjee and A. Leuski. An active learning based approach for effective video annotation and retrieval. NIPS, 2015.
-
(2015)
NIPS
-
-
Chatterjee, M.1
Leuski, A.2
-
3
-
-
84946716984
-
Robust face recognition via multimodal deep face representation
-
C. Ding and D. Tao. Robust face recognition via multimodal deep face representation. IEEE Transaction on Multimedia, 17(11):2049-2058, 2015.
-
(2015)
IEEE Transaction on Multimedia
, vol.17
, Issue.11
, pp. 2049-2058
-
-
Ding, C.1
Tao, D.2
-
4
-
-
84897543523
-
Maxout networks
-
I. J. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
5
-
-
84994569942
-
Ms-celeb-1m: A dataset and benchmark for large scale face recognition
-
Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large scale face recognition. In ECCV, 2016.
-
(2016)
ECCV
-
-
Guo, Y.1
Zhang, L.2
Hu, Y.3
He, X.4
Gao, J.5
-
6
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
7
-
-
67949089440
-
Online multi-label active annotation: Towards large-scale content-based video search
-
X.-S. Hua and G.-J. Qi. Online multi-label active annotation: Towards large-scale content-based video search. In ACM Multimedia, pages 141-150, 2008.
-
(2008)
ACM Multimedia
, pp. 141-150
-
-
Hua, X.-S.1
Qi, G.-J.2
-
8
-
-
51849117118
-
Labeled faces in the wild: A database for studying face recognition in unconstrained environments
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.
-
(2007)
Technical Report, Technical Report 07-49, University of Massachusetts, Amherst
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
10
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM Multimedia, pages 675-678, 2014.
-
(2014)
ACM Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
11
-
-
78651463011
-
Selective supervision: Guiding supervised learning with decision-theoretic active learning
-
A. Kapoor, E. Horvitz, and S. Basu. Selective supervision: Guiding supervised learning with decision-theoretic active learning. In IJCAI, 2007.
-
(2007)
IJCAI
-
-
Kapoor, A.1
Horvitz, E.2
Basu, S.3
-
13
-
-
70349425850
-
Dlib-ml: A machine learning toolkit
-
D. E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10:1755-1758, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1755-1758
-
-
King, D.E.1
-
14
-
-
84941368895
-
A convolutional neural network cascade for face detection
-
H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade for face detection. In CVPR, pages 5325-5334, 2015.
-
(2015)
CVPR
, pp. 5325-5334
-
-
Li, H.1
Lin, Z.2
Shen, X.3
Brandt, J.4
Hua, G.5
-
15
-
-
84987780044
-
-
arXiv preprint arXiv: 1603.07057
-
I. Masi, A. T. Tran, J. T. Leksut, T. Hassner, and G. Medioni. Do we really need to collect millions of faces for effective face recognition? arXiv preprint arXiv:1603.07057, 2016.
-
(2016)
Do We Really Need to Collect Millions of Faces for Effective Face Recognition?
-
-
Masi, I.1
Tran, A.T.2
Leksut, J.T.3
Hassner, T.4
Medioni, G.5
-
17
-
-
84959184491
-
Best of both worlds: Human-machine collaboration for object annotation
-
O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds: Human-machine collaboration for object annotation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Russakovsky, O.1
Li, L.-J.2
Fei-Fei, L.3
-
18
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815-823, 2015.
-
(2015)
CVPR
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philb, J.3
-
19
-
-
84986317469
-
Training region-based object detectors with online hard example mining
-
A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online hard example mining. In CVPR, 2016.
-
(2016)
CVPR
-
-
Shrivastava, A.1
Gupta, A.2
Girshick, R.3
-
20
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
21
-
-
84959244512
-
Active sample selection and correction propagation on a gradually-augmented graph
-
H. Su, Z. Yin, T. Kanade, and S. Huh. Active sample selection and correction propagation on a gradually-augmented graph. In CVPR, 2015.
-
(2015)
CVPR
-
-
Su, H.1
Yin, Z.2
Kanade, T.3
Huh, S.4
-
22
-
-
84911126535
-
Deep learning face representation from predicting 10,000 classes
-
Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, pages 1891-1898, 2014.
-
(2014)
CVPR
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
23
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
|