-
1
-
-
79955730478
-
Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol
-
[1] Takei, T., Iguchi, N., Haruta, M., Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal. Surv. Asia 15 (2008), 80–88.
-
(2008)
Catal. Surv. Asia
, vol.15
, pp. 80-88
-
-
Takei, T.1
Iguchi, N.2
Haruta, M.3
-
2
-
-
84898066573
-
Recent advances in catalytic conversion of ethanol to chemicals
-
[2] Sun, J.M., Wang, Y., Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 4 (2014), 1078–1090.
-
(2014)
ACS Catal.
, vol.4
, pp. 1078-1090
-
-
Sun, J.M.1
Wang, Y.2
-
3
-
-
70449555930
-
Acetaldehyde from ethylene–a retrospective on the discovery of the Wacker process
-
[3] Jira, R., Acetaldehyde from ethylene–a retrospective on the discovery of the Wacker process. Angew. Chem. Int. Ed. 48 (2009), 9034–9037.
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 9034-9037
-
-
Jira, R.1
-
4
-
-
34247574246
-
Bioethanol: fuel or feedstock
-
[4] Rass-Hansen, J., Falsig, H., Jørgensen, B., Christensen, C.H., Bioethanol: fuel or feedstock. J. Chem. Technol. Biotechnol. 82 (2007), 329–333.
-
(2007)
J. Chem. Technol. Biotechnol.
, vol.82
, pp. 329-333
-
-
Rass-Hansen, J.1
Falsig, H.2
Jørgensen, B.3
Christensen, C.H.4
-
8
-
-
0041836318
-
2 catalysts obtained by grafting vanadium and titanium alkoxides on silica
-
2 catalysts obtained by grafting vanadium and titanium alkoxides on silica. J. Mol. Catal. A Chem. 204–205) (2003), 617–627.
-
(2003)
J. Mol. Catal. A Chem.
, vol.204-205
, pp. 617-627
-
-
Santacesaria, E.1
-
9
-
-
33746291313
-
Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst
-
[9] Christensen, C.H., Jorgensen, B., Hansen, J.R., Kresten, E., Robert, M., Klitgaard, S.K., Hansen, S.M., Hansen, M.R., Andersen, H.C., Riisager, A., Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem. Int. Ed. 45) (2006), 4648–4651.
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 4648-4651
-
-
Christensen, C.H.1
Jorgensen, B.2
Hansen, J.R.3
Kresten, E.4
Robert, M.5
Klitgaard, S.K.6
Hansen, S.M.7
Hansen, M.R.8
Andersen, H.C.9
Riisager, A.10
-
10
-
-
79957796368
-
“Double-Peak” catalytic activity of nanosized gold supported on titania in gas-phase selective oxidation of ethanol
-
[10] Simakova, O.A., Sobolev, V.I., Koltunov, K.Y., Campo, B., Leino, A.R., Kordas, K., Murzin, D.Y., “Double-Peak” catalytic activity of nanosized gold supported on titania in gas-phase selective oxidation of ethanol. ChemCatChem 2 (2010), 1535–1538.
-
(2010)
ChemCatChem
, vol.2
, pp. 1535-1538
-
-
Simakova, O.A.1
Sobolev, V.I.2
Koltunov, K.Y.3
Campo, B.4
Leino, A.R.5
Kordas, K.6
Murzin, D.Y.7
-
11
-
-
84884876017
-
4 catalyst for gas-phase oxidation of ethanol to acetaldehyde
-
4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 135 (2013), 14032–14035.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 14032-14035
-
-
Liu, P.1
Hensen, E.J.2
-
12
-
-
84883861691
-
Nanocarbons for the development of advanced catalysts
-
[12] Su, D.S., Perathoner, S., Centi, G., Nanocarbons for the development of advanced catalysts. Chem. Rev. 113 (2013), 5782–5816.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5782-5816
-
-
Su, D.S.1
Perathoner, S.2
Centi, G.3
-
13
-
-
84903436519
-
Carbocatalysis by graphene-based materials
-
[13] Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Garcia, H., Carbocatalysis by graphene-based materials. Chem. Rev. 114 (2014), 6179–6212.
-
(2014)
Chem. Rev.
, vol.114
, pp. 6179-6212
-
-
Navalon, S.1
Dhakshinamoorthy, A.2
Alvaro, M.3
Garcia, H.4
-
14
-
-
78149434875
-
Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene
-
[14] Zhang, J., Su, D.S., Blume, R., Schlogl, R., Wang, R., Yang, X.G., Gajovic, A., Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 49 (2010), 8640–8644.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 8640-8644
-
-
Zhang, J.1
Su, D.S.2
Blume, R.3
Schlogl, R.4
Wang, R.5
Yang, X.G.6
Gajovic, A.7
-
15
-
-
76349116721
-
Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene
-
[15] Delgado, J.J., Chen, X., Tessonnier, J.P., Schuster, M.E., Rio, E.D., Schlogl, R., Su, D.S., Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene. Cat. Today 150 (2010), 49–54.
-
(2010)
Cat. Today
, vol.150
, pp. 49-54
-
-
Delgado, J.J.1
Chen, X.2
Tessonnier, J.P.3
Schuster, M.E.4
Rio, E.D.5
Schlogl, R.6
Su, D.S.7
-
16
-
-
53349108445
-
Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane
-
[16] Zhang, J., Liu, X., Blume, R., Zhang, A.H., Schlogl, R., Su, D.S., Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322 (2008), 73–77.
-
(2008)
Science
, vol.322
, pp. 73-77
-
-
Zhang, J.1
Liu, X.2
Blume, R.3
Zhang, A.H.4
Schlogl, R.5
Su, D.S.6
-
17
-
-
84947998490
-
Oxygen breaks into carbon nanotubes and abstracts hydrogen from propane
-
[17] Huang, R., Xu, J.Y., Wang, J., Sun, X.Y., Qi, W., Liang, C.H., Su, D.S., Oxygen breaks into carbon nanotubes and abstracts hydrogen from propane. Carbon 96 (2016), 631–640.
-
(2016)
Carbon
, vol.96
, pp. 631-640
-
-
Huang, R.1
Xu, J.Y.2
Wang, J.3
Sun, X.Y.4
Qi, W.5
Liang, C.H.6
Su, D.S.7
-
18
-
-
33847273840
-
Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon
-
[18] Matter, P.H., Wang, E., Arias, M., Biddinger, E.J., Ozkan, U.S., Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. J. Mol. Catal. A Chem. 264 (2007), 73–81.
-
(2007)
J. Mol. Catal. A Chem.
, vol.264
, pp. 73-81
-
-
Matter, P.H.1
Wang, E.2
Arias, M.3
Biddinger, E.J.4
Ozkan, U.S.5
-
19
-
-
27744459434
-
Nitrogen doping in carbon nanotubes
-
[19] Ewels, C.P., Glerup, M., Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotech. 5 (2005), 1345–1363.
-
(2005)
J. Nanosci. Nanotech.
, vol.5
, pp. 1345-1363
-
-
Ewels, C.P.1
Glerup, M.2
-
20
-
-
84860736699
-
Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications
-
[20] Wang, H.B., Maiyalagan, T., Wang, X., Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2 (2012), 781–794.
-
(2012)
ACS Catal.
, vol.2
, pp. 781-794
-
-
Wang, H.B.1
Maiyalagan, T.2
Wang, X.3
-
21
-
-
84882721310
-
Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane
-
[21] Chen, C.L., Zhang, J., Zhang, B.S., Yu, C.L., Peng, F., Su, D.S., Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chem. Commun. 49 (2013), 8151–8153.
-
(2013)
Chem. Commun.
, vol.49
, pp. 8151-8153
-
-
Chen, C.L.1
Zhang, J.2
Zhang, B.S.3
Yu, C.L.4
Peng, F.5
Su, D.S.6
-
22
-
-
84904431204
-
Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction
-
[22] Lin, Y.M., Pan, X.L., Qi, W., Zhang, B.S., Su, D.S., Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. J. Mater. Chem. A 2 (2014), 12475–12483.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 12475-12483
-
-
Lin, Y.M.1
Pan, X.L.2
Qi, W.3
Zhang, B.S.4
Su, D.S.5
-
23
-
-
84863686026
-
Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes
-
[23] Yu, H., Peng, F., Tan, J., Hu, X.W., Wang, H.J., Yang, J., Zheng, W.X., Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew. Chem. Int. Ed. 123 (2011), 4064–4068.
-
(2011)
Angew. Chem. Int. Ed.
, vol.123
, pp. 4064-4068
-
-
Yu, H.1
Peng, F.2
Tan, J.3
Hu, X.W.4
Wang, H.J.5
Yang, J.6
Zheng, W.X.7
-
24
-
-
84873549343
-
2-hybridized carbon as a superior catalyst for selective oxidation
-
2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed. 52 (2013), 2109–2113.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 2109-2113
-
-
Gao, Y.J.1
Hu, G.2
Zhong, J.3
Shi, Z.J.4
Zhu, Y.S.5
Su, D.S.6
Wang, J.G.7
Bao, X.H.8
Ma, D.9
-
25
-
-
84904292368
-
2S
-
2S. Appl. Catal. A-Gen. 482 (2014), 397–406.
-
(2014)
Appl. Catal. A-Gen.
, vol.482
, pp. 397-406
-
-
Viet, C.D.1
Phuoc, L.T.2
Tung, T.T.3
Nhut, J.M.4
Dinh, L.N.5
Janowska, I.6
Begin, D.7
Huu, C.P.8
-
26
-
-
77955976565
-
Activity of nitrogen containing carbon nanotubes in base catalyzed knoevenagel condensation
-
[26] Dommele, S.V., de Jong, K.P., Bitter, J.H., Activity of nitrogen containing carbon nanotubes in base catalyzed knoevenagel condensation. Top. Catal. 52 (2009), 1575–1583.
-
(2009)
Top. Catal.
, vol.52
, pp. 1575-1583
-
-
Dommele, S.V.1
de Jong, K.P.2
Bitter, J.H.3
-
27
-
-
70349907296
-
Defect-mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion
-
[27] Tessonnier, J.P., Villa, A., Majoulet, O., Su, D.S., Schlogl, R., Defect-mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion. Angew. Chem. Int. Ed. 48 (2009), 6543–6546.
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 6543-6546
-
-
Tessonnier, J.P.1
Villa, A.2
Majoulet, O.3
Su, D.S.4
Schlogl, R.5
-
28
-
-
77954301988
-
Nitrogen-doped carbon materials prepared by ammoxidation as solid base catalysts for knoevenagel condensation and transesterification Reactions
-
[28] Kan-nari, N., Okamura, S., Fujita, S.I., Ozaki, J.I., Arai, M., Nitrogen-doped carbon materials prepared by ammoxidation as solid base catalysts for knoevenagel condensation and transesterification Reactions. Adv. Synth. Catal. 352 (2010), 1476–1484.
-
(2010)
Adv. Synth. Catal.
, vol.352
, pp. 1476-1484
-
-
Kan-nari, N.1
Okamura, S.2
Fujita, S.I.3
Ozaki, J.I.4
Arai, M.5
-
29
-
-
84858986859
-
Amino-grafted graphene as a stable and metal-free solid basic catalyst
-
[29] Yuan, C.F., Chen, W.F., Yan, L.F., Amino-grafted graphene as a stable and metal-free solid basic catalyst. J. Mater. Chem. A 22 (2012), 7456–7460.
-
(2012)
J. Mater. Chem. A
, vol.22
, pp. 7456-7460
-
-
Yuan, C.F.1
Chen, W.F.2
Yan, L.F.3
-
30
-
-
84902498048
-
Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene
-
[30] Tang, P., Gao, Y.J., Yang, J.H., Li, W.J., Zhao, H.B., Ma, D., Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene. Chin. J. Catal. 35 (2014), 922–928.
-
(2014)
Chin. J. Catal.
, vol.35
, pp. 922-928
-
-
Tang, P.1
Gao, Y.J.2
Yang, J.H.3
Li, W.J.4
Zhao, H.B.5
Ma, D.6
-
31
-
-
77951468406
-
The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study
-
[31] Kundu, S., Wei, X., Busser, W., Becher, M., Schmidt, D.A., Havenith, M., Muhler, M., The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys. Chem. Chem. Phys. 12 (2010), 4351–4359.
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 4351-4359
-
-
Kundu, S.1
Wei, X.2
Busser, W.3
Becher, M.4
Schmidt, D.A.5
Havenith, M.6
Muhler, M.7
-
32
-
-
84875271284
-
Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane
-
[32] Cao, Y.H., Yu, H., Tan, J., Peng, F., Wang, H.J., Li, J., Zheng, W.X., Wong, N.B., Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 57 (2013), 433–442.
-
(2013)
Carbon
, vol.57
, pp. 433-442
-
-
Cao, Y.H.1
Yu, H.2
Tan, J.3
Peng, F.4
Wang, H.J.5
Li, J.6
Zheng, W.X.7
Wong, N.B.8
-
33
-
-
63049109848
-
Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes
-
[33] Arrigo, R., Havecker, M., Schlogl, R., Su, D.S., Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem. Commun., 2008, 4891–4893.
-
(2008)
Chem. Commun.
, pp. 4891-4893
-
-
Arrigo, R.1
Havecker, M.2
Schlogl, R.3
Su, D.S.4
-
34
-
-
9644257884
-
Carbon nitride nanocomposites: formation of aligned CxNy nanofibers
-
[34] Terrone, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Ruhle, M., Kroto, H.W., Walton, David R.M., Carbon nitride nanocomposites: formation of aligned CxNy nanofibers. Adv. Mater. 11 (1999), 655–665.
-
(1999)
Adv. Mater.
, vol.11
, pp. 655-665
-
-
Terrone, M.1
Redlich, P.2
Grobert, N.3
Trasobares, S.4
Hsu, W.K.5
Terrones, H.6
Zhu, Y.Q.7
Hare, J.P.8
Reeves, C.L.9
Cheetham, A.K.10
Ruhle, M.11
Kroto, H.W.12
Walton, D.R.M.13
-
35
-
-
80052573226
-
Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation
-
[35] Sumpter, B.G., Meunier, V., Romo-Herrera, J.M., Cruz-Silva, E., Cullen, D.A., Terrones, H., Smith, D.J., Terrones, M., Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1 (2007), 369–375.
-
(2007)
ACS Nano
, vol.1
, pp. 369-375
-
-
Sumpter, B.G.1
Meunier, V.2
Romo-Herrera, J.M.3
Cruz-Silva, E.4
Cullen, D.A.5
Terrones, H.6
Smith, D.J.7
Terrones, M.8
-
36
-
-
2342632568
-
Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes
-
[36] Jang, J.W., Lee, C.E., Lyu, S.C., Lee, T.J., Lee, C.J., Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84 (2004), 2877–2879.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 2877-2879
-
-
Jang, J.W.1
Lee, C.E.2
Lyu, S.C.3
Lee, T.J.4
Lee, C.J.5
-
38
-
-
18044399670
-
Identification of electron donor states in N-Doped carbon nanotubes
-
[38] Czerw, R., Terrones, M., Charlier, J.-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P.M., Blau, W., Rühle, M., Carroll, D.L., Identification of electron donor states in N-Doped carbon nanotubes. Nano Lett. 1 (2001), 457–460.
-
(2001)
Nano Lett.
, vol.1
, pp. 457-460
-
-
Czerw, R.1
Terrones, M.2
Charlier, J.-C.3
Blase, X.4
Foley, B.5
Kamalakaran, R.6
Grobert, N.7
Terrones, H.8
Tekleab, D.9
Ajayan, P.M.10
Blau, W.11
Rühle, M.12
Carroll, D.L.13
-
39
-
-
33749213901
-
Reaction kinetics in differential thermal analysis
-
[39] Kissinger, H.E., Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957), 1702–1706.
-
(1957)
Anal. Chem.
, vol.29
, pp. 1702-1706
-
-
Kissinger, H.E.1
-
40
-
-
84863115653
-
Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping
-
[40] Ni, S., Li, Z., Yang, J.L., Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4 (2012), 1184–1189.
-
(2012)
Nanoscale
, vol.4
, pp. 1184-1189
-
-
Ni, S.1
Li, Z.2
Yang, J.L.3
-
41
-
-
18244406027
-
The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect
-
[41] Bettinger, H.F., The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect. J. Phys. Chem. B 109 (2005), 6922–6924.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 6922-6924
-
-
Bettinger, H.F.1
-
42
-
-
79952275635
-
Structural defects in graphene
-
[42] Banhart, F., Kotakoski, J., Krasheninnikov, A.V., Structural defects in graphene. ACS Nano 5 (2011), 26–41.
-
(2011)
ACS Nano
, vol.5
, pp. 26-41
-
-
Banhart, F.1
Kotakoski, J.2
Krasheninnikov, A.V.3
-
43
-
-
76349096027
-
On the virtue of acid–base titrations for the determination of basic sites in nitrogen doped carbon nanotubes
-
[43] Bitter, J.H., Dommele, S.V., de Jong, K.P., On the virtue of acid–base titrations for the determination of basic sites in nitrogen doped carbon nanotubes. Cat. Today 150 (2010), 61–66.
-
(2010)
Cat. Today
, vol.150
, pp. 61-66
-
-
Bitter, J.H.1
Dommele, S.V.2
de Jong, K.P.3
-
44
-
-
84923886564
-
Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials
-
[44] Li, B., Sun, X.Y., Su, D.S., Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials. Phys. Chem. Chem. Phys. 17 (2015), 6691–6694.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 6691-6694
-
-
Li, B.1
Sun, X.Y.2
Su, D.S.3
-
45
-
-
0001299652
-
Surface-treated activated carbons as catalysts for the ethanol
-
[45] Carrasco-Marin, F., Mueden, A., Moreno-Castilla, C., Surface-treated activated carbons as catalysts for the ethanol. J. Phys. Chem. B 102 (1998), 9239–9244.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 9239-9244
-
-
Carrasco-Marin, F.1
Mueden, A.2
Moreno-Castilla, C.3
-
46
-
-
79952699511
-
Ethanol dehydration to ethylene on acid carbon catalysts
-
[46] Bedia, J., Barrionuevo, R., Rodríguez-Mirasol, J., Cordero, T., Ethanol dehydration to ethylene on acid carbon catalysts. Appl. Catal. B Environ. 103 (2011), 302–310.
-
(2011)
Appl. Catal. B Environ.
, vol.103
, pp. 302-310
-
-
Bedia, J.1
Barrionuevo, R.2
Rodríguez-Mirasol, J.3
Cordero, T.4
-
47
-
-
84887018763
-
Theoretical studies on ethylene selectivity in the oxidative dehydrogenation reaction on undoped and doped nanostructured carbon catalysts
-
[47] Li, B., Su, D.S., Theoretical studies on ethylene selectivity in the oxidative dehydrogenation reaction on undoped and doped nanostructured carbon catalysts. Chem. Asian J. 8 (2013), 2605–2608.
-
(2013)
Chem. Asian J.
, vol.8
, pp. 2605-2608
-
-
Li, B.1
Su, D.S.2
-
48
-
-
79951600555
-
High reactivity of metal-free nitrogen-doped carbon nanotube for the C-H activation
-
[48] Hu, X.B., Zhou, Z., Lin, Q.X., Wu, Y.T., Zhang, Z.B., High reactivity of metal-free nitrogen-doped carbon nanotube for the C-H activation. Chem. Phys. Lett. 503 (2011), 287–291.
-
(2011)
Chem. Phys. Lett.
, vol.503
, pp. 287-291
-
-
Hu, X.B.1
Zhou, Z.2
Lin, Q.X.3
Wu, Y.T.4
Zhang, Z.B.5
-
49
-
-
78649964368
-
Oxidative dehydrogenation of ethanol to acetaldehyde and ethyl acetate by graphite nanofibers
-
[49] Weinstein, R.D., Ferens, A.R., Orange, R.J., Lemaire, P., Oxidative dehydrogenation of ethanol to acetaldehyde and ethyl acetate by graphite nanofibers. Carbon 49 (2011), 701–707.
-
(2011)
Carbon
, vol.49
, pp. 701-707
-
-
Weinstein, R.D.1
Ferens, A.R.2
Orange, R.J.3
Lemaire, P.4
-
50
-
-
84885988862
-
Partial oxidation of ethanol to acetaldehyde over surface-modified single-walled carbon nanotubes
-
[50] Abdullahi, I., Davis, T.J., Yun, D.M., Herrera, J.E., Partial oxidation of ethanol to acetaldehyde over surface-modified single-walled carbon nanotubes. Appl. Catal. A Gen. 469 (2014), 8–17.
-
(2014)
Appl. Catal. A Gen.
, vol.469
, pp. 8-17
-
-
Abdullahi, I.1
Davis, T.J.2
Yun, D.M.3
Herrera, J.E.4
-
51
-
-
84979082766
-
-
[51] Wang, J., Huang, R., Feng, Z.B., Liu, H.Y., Su, D.S., ChemSusChem 9 (2016), 1820–1826.
-
(2016)
ChemSusChem
, vol.9
, pp. 1820-1826
-
-
Wang, J.1
Huang, R.2
Feng, Z.B.3
Liu, H.Y.4
Su, D.S.5
|