-
1
-
-
85025675003
-
-
Renishaw
-
Renishaw, http://www.renishaw.com.
-
-
-
-
2
-
-
85025666520
-
-
[2]Heidenhain
-
Heidenhain, http://www.heidenhain.com
-
-
-
-
3
-
-
85025634564
-
-
Sony
-
Sony, http://www.sonysms.com
-
-
-
-
4
-
-
85025673206
-
-
MicroE System
-
MicroE System, http://www.microesys.com
-
-
-
-
5
-
-
0019621824
-
Determination and correction of quadrature fringe measurement errors in interferometers
-
P.L.M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers ” Applied Optics, 20, 3382-3384 (1981)
-
(1981)
Applied Optics
, vol.20
, pp. 3382-3384
-
-
Heydemann, P.L.M.1
-
6
-
-
49949119709
-
-
U.S. Patent, 4,629
-
K. Akiyama and H. Iwaoka, High resolution digital diffraction grating scale encoder, U.S. Patent, 4,629,886 (1986)
-
(1986)
High Resolution Digital Diffraction Grating Scale Encoder
, pp. 886
-
-
Akiyama, K.1
Iwaoka, H.2
-
7
-
-
85015798038
-
-
U.S. Patent, 4,676
-
K. Taniguchi, H. Tsuchiya and M. Toyama, Optical instrument for measuring displacement, U.S. Patent, 4,676,645 (1987)
-
(1987)
Optical Instrument for Measuring Displacement
, pp. 645
-
-
Taniguchi, K.1
Tsuchiya, H.2
Toyama, M.3
-
8
-
-
0345250889
-
-
U.S. Patent, 4,912
-
S. Ishii, T. Nishimura, K. Ishizuka and M. Tsukiji, Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement, U.S. Patent, 4,912,320 (1990)
-
(1990)
Optical Type Encoder including Diffraction Grating for Producing Interference Fringes that are Processed to Measure Displacement
, pp. 320
-
-
Ishii, S.1
Nishimura, T.2
Ishizuka, K.3
Tsukiji, M.4
-
9
-
-
0345682487
-
-
U.S. Patent, 5,036
-
K. Ishizuka, T. Nishimura and O. Kasahara, Rotary encoder using reflected light, U.S. Patent, 5,036,192 (1991)
-
(1991)
Rotary Encoder Using Reflected Light
, pp. 192
-
-
Ishizuka, K.1
Nishimura, T.2
Kasahara, O.3
-
10
-
-
34248145764
-
-
U.S. Patent, 5,038,032
-
T. Nishimura, Y. Kubota, S. Ishii, K. Ishizuka and M. Tsukiji, Encoder incorporating a displaceable diffraction grating, U.S. Patent, 5,038,032. (1991)
-
(1991)
Encoder Incorporating a Displaceable Diffraction Grating
-
-
Nishimura, T.1
Kubota, Y.2
Ishii, S.3
Ishizuka, K.4
Tsukiji, M.5
-
11
-
-
0345250890
-
-
U.S. Patent, 5,146,085
-
K. Ishizuka and T. Nishimura, Encoder with high resolving power and accuracy, U.S. Patent, 5,146,085 (1992)
-
(1992)
Encoder with High Resolving Power and Accuracy
-
-
Ishizuka, K.1
Nishimura, T.2
-
12
-
-
85025653208
-
-
U.S. Patent, 5,120
-
A. Spies and A. Teimel, Position measuring apparatus utilizing two-beam interferences to create phase displaced signals, U.S. Patent, 5,120,132 (1992)
-
(1992)
Position Measuring Apparatus Utilizing Two-Beam Interferences to Create Phase Displaced Signals
, pp. 132
-
-
Spies, A.1
Teimel, A.2
-
14
-
-
0029267084
-
Development of a new optical scale system by the diffractive phase interference method
-
J.D. Lin, and H.B. Kuo, “Development of a new optical scale system by the diffractive phase interference method” Measurement Science and Technology, 6, 293-296 (1995)
-
(1995)
Measurement Science and Technology
, vol.6
, pp. 293-296
-
-
Lin, J.D.1
Kuo, H.B.2
-
15
-
-
0029223644
-
A compact, robust and versatile Moire interferometer
-
D.H. Mollenhauer and P.G. Ifju and B. Han,“A compact, robust and versatile Moire interferometer” Optics and Laser in Engineering, 23, 29-40 (1995)
-
(1995)
Optics and Laser in Engineering
, vol.23
, pp. 29-40
-
-
Mollenhauer, D.H.1
Ifju, P.G.2
Han, B.3
-
16
-
-
0004034276
-
-
U.S. Patent, 5,442
-
W.W. Chiang and C.K. Lee, Wavefront reconstruction optics for use in a disk drive position measurement system, U.S. Patent, 5,442,172 (1995)
-
(1995)
Wavefront Reconstruction Optics for Use in a Disk Drive Position Measurement System
, pp. 172
-
-
Chiang, W.W.1
Lee, C.K.2
-
17
-
-
0345682489
-
-
U.S. Patent, 5,486
-
D.K. Mitchell and W.G. Thorburn, Apparatus for detecting relative movement wherein a detecting means is positioned in the region of natural interference, U.S. Patent, 5,486,923 (1996)
-
(1996)
Apparatus for Detecting Relative Movement Wherein a Detecting Means is Positioned in the Region of Natural Interference
, pp. 923
-
-
Mitchell, D.K.1
Thorburn, W.G.2
-
19
-
-
0009129496
-
Monolithic-integrated microlaser encoder
-
R. Sawada, E. Higurashi, T. Ito, O. Ohguchi and M. Tsubamoto, “Monolithic-integrated microlaser encoder” Applied Optics, 38, 6866-6873 (1999)
-
(1999)
Applied Optics
, vol.38
, pp. 6866-6873
-
-
Sawada, R.1
Higurashi, E.2
Ito, T.3
Ohguchi, O.4
Tsubamoto, M.5
-
21
-
-
9144263698
-
Design and construction of linear laser encoders that possess high tolerance of mechanical run out
-
C.K. Lee, C.C. Wu, S.J. Chen, L.B. Yu, Y.C. Chang, Y.F. Wang, J.Y. Chen, and J.W.J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical run out ” Applied Optics, 43, 5754-5762 (2004)
-
(2004)
Applied Optics
, vol.43
, pp. 5754-5762
-
-
Lee, C.K.1
Wu, C.C.2
Chen, S.J.3
Yu, L.B.4
Chang, Y.C.5
Wang, Y.F.6
Chen, J.Y.7
Wu, J.W.J.8
-
22
-
-
67649279552
-
Five-degrees-of-freedom diffractive laser encoder
-
C.H. Liu, H.L. Huang and H.W. Lee, “Five-degrees-of-freedom diffractive laser encoder” Applied Optics, 48, 2767-2777 (2009)
-
(2009)
Applied Optics
, vol.48
, pp. 2767-2777
-
-
Liu, C.H.1
Huang, H.L.2
Lee, H.W.3
|