메뉴 건너뛰기




Volumn 34, Issue , 2017, Pages 12-22

A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures

Author keywords

Burkholderia sacchari; Glucose xylose mixtures; Poly 3 hydroxybutyrate; Xylitol; Xylonic acid; Xylose consumption

Indexed keywords

CARBON; MIXTURES; PRODUCTIVITY; SUGAR SUBSTITUTES;

EID: 84992135507     PISSN: 18716784     EISSN: 18764347     Source Type: Journal    
DOI: 10.1016/j.nbt.2016.10.001     Document Type: Article
Times cited : (44)

References (32)
  • 1
    • 0032607356 scopus 로고    scopus 로고
    • Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol
    • T. Scheper Springer Verlag Berlin Heidelberg
    • [1] Ho, N.W.Y., Chen, Z., Brainard, A.P., Sedlak, M., Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Scheper, T., (eds.) Advances in Biochemical Engineering/Biotechnology, vol. 65, 1999, Springer, Verlag Berlin Heidelberg, 163–192.
    • (1999) Advances in Biochemical Engineering/Biotechnology , vol.65 , pp. 163-192
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3    Sedlak, M.4
  • 2
    • 0034911540 scopus 로고    scopus 로고
    • Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
    • [2] Nichols, N.N., Dien, B.S., Bothast, R.J., Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56 (2001), 120–125.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 120-125
    • Nichols, N.N.1    Dien, B.S.2    Bothast, R.J.3
  • 3
    • 0036853118 scopus 로고    scopus 로고
    • Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid
    • [3] Dien, B.S., Nichols, N.N., Bothast, R.J., Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Industr Microbiol Biotechnol 29 (2002), 221–227.
    • (2002) J Industr Microbiol Biotechnol , vol.29 , pp. 221-227
    • Dien, B.S.1    Nichols, N.N.2    Bothast, R.J.3
  • 4
    • 84992043666 scopus 로고    scopus 로고
    • Lignocellulosic hydrolysates for the production of polyhydroxyalkanoates
    • B. Kamm Springer-Verlag Berlin, Heidelberg
    • [4] Cesário, M.T.F., Dias de Almeida, M.C.M., Lignocellulosic hydrolysates for the production of polyhydroxyalkanoates. Kamm, B., (eds.) Microorganisms in Biorefineries, 26, 2015, Springer-Verlag, Berlin, Heidelberg, 79–104.
    • (2015) Microorganisms in Biorefineries , vol.26 , pp. 79-104
    • Cesário, M.T.F.1    Dias de Almeida, M.C.M.2
  • 5
    • 80052766425 scopus 로고    scopus 로고
    • PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari
    • [5] Lopes, M., Gosset, G., Rocha, R., Gomez, J., Ferreira da Silva, L., PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari. Curr Microbiol 63 (2011), 319–326.
    • (2011) Curr Microbiol , vol.63 , pp. 319-326
    • Lopes, M.1    Gosset, G.2    Rocha, R.3    Gomez, J.4    Ferreira da Silva, L.5
  • 9
    • 77955132055 scopus 로고    scopus 로고
    • Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment
    • [9] Rojo, F., Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34 (2010), 658–684.
    • (2010) FEMS Microbiol Rev , vol.34 , pp. 658-684
    • Rojo, F.1
  • 10
    • 26844512919 scopus 로고    scopus 로고
    • Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system
    • [10] Gosset, G., Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact, 2005, 4.
    • (2005) Microb Cell Fact , pp. 4
    • Gosset, G.1
  • 11
    • 70349576368 scopus 로고    scopus 로고
    • Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli
    • [11] Yomano, L.P., York, S.W., Shanmugam, K.T., Ingram, L.O., Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31 (2009), 1389–1398.
    • (2009) Biotechnol Lett , vol.31 , pp. 1389-1398
    • Yomano, L.P.1    York, S.W.2    Shanmugam, K.T.3    Ingram, L.O.4
  • 12
    • 0028414108 scopus 로고
    • Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control
    • [12] Kim, B.S., Lee, S.C., Lee, S.Y., Chang, H.N., Chang, Y.K., Woo, S.I., Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43 (1994), 892–898.
    • (1994) Biotechnol Bioeng , vol.43 , pp. 892-898
    • Kim, B.S.1    Lee, S.C.2    Lee, S.Y.3    Chang, H.N.4    Chang, Y.K.5    Woo, S.I.6
  • 13
    • 84858747436 scopus 로고    scopus 로고
    • Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol
    • [13] Cavalheiro, J.M.B.T., Raposo, R.S., de Almeida, M.C.M.D., Cesário, M.T., Sevrin, C., Grandfils, C., et al. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111 (2012), 391–397.
    • (2012) Bioresour Technol , vol.111 , pp. 391-397
    • Cavalheiro, J.M.B.T.1    Raposo, R.S.2    de Almeida, M.C.M.D.3    Cesário, M.T.4    Sevrin, C.5    Grandfils, C.6
  • 15
  • 16
    • 0017186922 scopus 로고
    • Xylitol production by an Enterobacter liquefaciens
    • [16] Yoshitake, J., Shimamura, M., Ishizaki, H., Irie, Y., Xylitol production by an Enterobacter liquefaciens. Agr Biol Chem 40 (1976), 1493–1503.
    • (1976) Agr Biol Chem , vol.40 , pp. 1493-1503
    • Yoshitake, J.1    Shimamura, M.2    Ishizaki, H.3    Irie, Y.4
  • 17
    • 0037209665 scopus 로고    scopus 로고
    • Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production
    • [17] Rangaswamy, S., Agblevor, F., Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl Microbiol Biotechnol 60 (2002), 88–93.
    • (2002) Appl Microbiol Biotechnol , vol.60 , pp. 88-93
    • Rangaswamy, S.1    Agblevor, F.2
  • 18
    • 84922526865 scopus 로고    scopus 로고
    • Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression
    • [18] Abdel-Rahman, M.A., Xiao, Y., Tashiro, Y., Wang, Y., Zendo, T., Sakai, K., et al. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J Biosci Bioeng 119 (2015), 153–158.
    • (2015) J Biosci Bioeng , vol.119 , pp. 153-158
    • Abdel-Rahman, M.A.1    Xiao, Y.2    Tashiro, Y.3    Wang, Y.4    Zendo, T.5    Sakai, K.6
  • 19
    • 62849084587 scopus 로고    scopus 로고
    • Current trends in biotechnological production of xylitol and future prospects
    • [19] Prakasham, R.S., Rao, R.S., Hobbs, P.J., Current trends in biotechnological production of xylitol and future prospects. Current Trends in Biotechnol Pharm 3 (2009), 8–36.
    • (2009) Current Trends in Biotechnol Pharm , vol.3 , pp. 8-36
    • Prakasham, R.S.1    Rao, R.S.2    Hobbs, P.J.3
  • 20
    • 84855219060 scopus 로고    scopus 로고
    • Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18
    • [20] Zhang, J., Geng, A., Yao, C., Lu, Y., Li, Q., Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105 (2012), 134–141.
    • (2012) Bioresour Technol , vol.105 , pp. 134-141
    • Zhang, J.1    Geng, A.2    Yao, C.3    Lu, Y.4    Li, Q.5
  • 21
    • 0029063798 scopus 로고
    • Xylitol production by Candida guilliermondii as an approach for the utilization of agroindustrial residues
    • [21] Roberto, I.C., Felipe, M.G.A., de Mancilha, I.M., Vitolo, M., Sato, S., da Silva, S.S., Xylitol production by Candida guilliermondii as an approach for the utilization of agroindustrial residues. Bioresour Technol 51 (1995), 255–257.
    • (1995) Bioresour Technol , vol.51 , pp. 255-257
    • Roberto, I.C.1    Felipe, M.G.A.2    de Mancilha, I.M.3    Vitolo, M.4    Sato, S.5    da Silva, S.S.6
  • 22
    • 0010626521 scopus 로고
    • Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates
    • [22] Buchert, J., PuIs, J., Poutanen, K., Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Appl Microbiol Biotechnol 28 (1988), 367–372.
    • (1988) Appl Microbiol Biotechnol , vol.28 , pp. 367-372
    • Buchert, J.1    PuIs, J.2    Poutanen, K.3
  • 23
    • 84861460544 scopus 로고    scopus 로고
    • High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli
    • [23] Liu, H., Valdehuesa, K.N.G., Nisola, G.M., Ramos, K.R.M., Chung, W.-J., High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol 115 (2012), 244–248.
    • (2012) Bioresour Technol , vol.115 , pp. 244-248
    • Liu, H.1    Valdehuesa, K.N.G.2    Nisola, G.M.3    Ramos, K.R.M.4    Chung, W.-J.5
  • 24
    • 84961817080 scopus 로고    scopus 로고
    • D-Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction
    • [24] Ma, J., Zhong, L., Peng, X., Sun, R., D-Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction. Green Chem 18 (2016), 1738–1750.
    • (2016) Green Chem , vol.18 , pp. 1738-1750
    • Ma, J.1    Zhong, L.2    Peng, X.3    Sun, R.4
  • 25
    • 84946479596 scopus 로고    scopus 로고
    • A novel aldose–aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae
    • [25] Wiebe, M.G., Nygård, Y., Oja, M., Andberg, M., Ruohonen, L., Koivula, A., et al. A novel aldose–aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99 (2015), 9439–9447.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 9439-9447
    • Wiebe, M.G.1    Nygård, Y.2    Oja, M.3    Andberg, M.4    Ruohonen, L.5    Koivula, A.6
  • 27
    • 0010626521 scopus 로고
    • Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates
    • [27] Buchert, J., PuIs, J., Poutanen, K., Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Appl Microbiol Biotechnol 28 (1988), 367–372.
    • (1988) Appl Microbiol Biotechnol , vol.28 , pp. 367-372
    • Buchert, J.1    PuIs, J.2    Poutanen, K.3
  • 29
    • 84901690883 scopus 로고    scopus 로고
    • Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production
    • [29] Bowers, T., Vaidya, A., Smith, D.A., Lloyd-Jones, G., Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production. J Chem Technol Biotechnol 89 (2014), 1030–1037.
    • (2014) J Chem Technol Biotechnol , vol.89 , pp. 1030-1037
    • Bowers, T.1    Vaidya, A.2    Smith, D.A.3    Lloyd-Jones, G.4
  • 30
    • 0024278477 scopus 로고
    • Fermentation of hemicellulosic sugars and sugar mixtures by Candida shehatae
    • [30] Jeffries, T.W., Sreenath, H.K., Fermentation of hemicellulosic sugars and sugar mixtures by Candida shehatae. Biotechnol Bioeng 31 (1988), 502–506.
    • (1988) Biotechnol Bioeng , vol.31 , pp. 502-506
    • Jeffries, T.W.1    Sreenath, H.K.2
  • 31
    • 26844444325 scopus 로고    scopus 로고
    • Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol
    • [31] Saha, B., Itena, L., Cottaa, M., Wu, Y., Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40 (2005), 3693–3700.
    • (2005) Process Biochem , vol.40 , pp. 3693-3700
    • Saha, B.1    Itena, L.2    Cottaa, M.3    Wu, Y.4
  • 32
    • 84906781668 scopus 로고    scopus 로고
    • Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds
    • [32] Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., Marova, I., Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49 (2014), 1409–1414.
    • (2014) Process Biochem , vol.49 , pp. 1409-1414
    • Obruca, S.1    Benesova, P.2    Petrik, S.3    Oborna, J.4    Prikryl, R.5    Marova, I.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.