-
1
-
-
34547681854
-
A tissue engineering approach to bone repair in large animal models and in clinical practice
-
[1] Cancedda, R., Giannoni, P., Mastrogiacomo, M., A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28 (2007), 4240–4250.
-
(2007)
Biomaterials
, vol.28
, pp. 4240-4250
-
-
Cancedda, R.1
Giannoni, P.2
Mastrogiacomo, M.3
-
2
-
-
10044293137
-
Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution
-
[2] Boontheekul, T., Kong, H.-J., Mooney, D.J., Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26 (2005), 2455–2465.
-
(2005)
Biomaterials
, vol.26
, pp. 2455-2465
-
-
Boontheekul, T.1
Kong, H.-J.2
Mooney, D.J.3
-
3
-
-
84866415693
-
Recent advances in bone tissue engineering scaffolds
-
[3] Bose, S., Roy, M., Bandyopadhyay, A., Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30 (2012), 546–554.
-
(2012)
Trends Biotechnol.
, vol.30
, pp. 546-554
-
-
Bose, S.1
Roy, M.2
Bandyopadhyay, A.3
-
4
-
-
84857784368
-
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review
-
[4] Bose, S., Tarafder, S., Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8 (2012), 1401–1421.
-
(2012)
Acta Biomater.
, vol.8
, pp. 1401-1421
-
-
Bose, S.1
Tarafder, S.2
-
5
-
-
0035671158
-
The design of scaffolds for use in tissue engineering. part I. traditional factors
-
[5] Yang, S., Leong, K.-F., Du, Z., Chua, C.-K., The design of scaffolds for use in tissue engineering. part I. traditional factors. Tissue Eng. 7 (2001), 679–689.
-
(2001)
Tissue Eng.
, vol.7
, pp. 679-689
-
-
Yang, S.1
Leong, K.-F.2
Du, Z.3
Chua, C.-K.4
-
6
-
-
84863755129
-
Functionalized synthetic biodegradable polymer scaffolds for tissue engineering
-
[6] Liu, X., Holzwarth, J.M., Ma, P.X., Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol. Biosci. 12 (2012), 911–919.
-
(2012)
Macromol. Biosci.
, vol.12
, pp. 911-919
-
-
Liu, X.1
Holzwarth, J.M.2
Ma, P.X.3
-
7
-
-
2542573225
-
Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan
-
[7] Iwasaki, N., Yamane, S.-T., Majima, T., Kasahara, Y., Minami, A., Harada, K., Nonaka, S., Maekawa, N., Tamura, H., Tokura, S., Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5 (2004), 828–833.
-
(2004)
Biomacromolecules
, vol.5
, pp. 828-833
-
-
Iwasaki, N.1
Yamane, S.-T.2
Majima, T.3
Kasahara, Y.4
Minami, A.5
Harada, K.6
Nonaka, S.7
Maekawa, N.8
Tamura, H.9
Tokura, S.10
-
8
-
-
84861203750
-
High-strength silk protein scaffolds for bone repair
-
[8] Mandal, B.B., Grinberg, A., Gil, E.S., Panilaitis, B., Kaplan, D.L., High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. 109 (2012), 7699–7704.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, pp. 7699-7704
-
-
Mandal, B.B.1
Grinberg, A.2
Gil, E.S.3
Panilaitis, B.4
Kaplan, D.L.5
-
9
-
-
0034670187
-
Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations
-
[9] Chupa, J.M., Foster, A.M., Sumner, S.R., Madihally, S.V., Matthew, H.W., Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 21 (2000), 2315–2322.
-
(2000)
Biomaterials
, vol.21
, pp. 2315-2322
-
-
Chupa, J.M.1
Foster, A.M.2
Sumner, S.R.3
Madihally, S.V.4
Matthew, H.W.5
-
10
-
-
84870251091
-
Protein release from alginate matrices
-
[10] Gombotz, W.R., Wee, S.F., Protein release from alginate matrices. Adv. Drug Deliv. Rev. 64 (2012), 194–205.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 194-205
-
-
Gombotz, W.R.1
Wee, S.F.2
-
11
-
-
84856615725
-
Alginate derivatization: a review of chemistry, properties and applications
-
[11] Pawar, S.N., Edgar, K.J., Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33 (2012), 3279–3305.
-
(2012)
Biomaterials
, vol.33
, pp. 3279-3305
-
-
Pawar, S.N.1
Edgar, K.J.2
-
12
-
-
80455173988
-
Alginate: properties and biomedical applications
-
[12] Lee, K.Y., Mooney, D.J., Alginate: properties and biomedical applications. Prog. Polym. Sci. 37 (2012), 106–126.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 106-126
-
-
Lee, K.Y.1
Mooney, D.J.2
-
13
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
[13] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24 (2003), 4337–4351.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
14
-
-
84888405143
-
Injectable, biodegradable hydrogels for tissue engineering applications
-
[14] Tan, H., Marra, K.G., Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3 (2010), 1746–1767.
-
(2010)
Materials
, vol.3
, pp. 1746-1767
-
-
Tan, H.1
Marra, K.G.2
-
15
-
-
84946556529
-
Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels
-
[15] Huang, Y., Yao, M., Zheng, X., Liang, X., Su, X., Zhang, Y., Lu, A., Zhang, L., Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16 (2015), 3499–3507.
-
(2015)
Biomacromolecules
, vol.16
, pp. 3499-3507
-
-
Huang, Y.1
Yao, M.2
Zheng, X.3
Liang, X.4
Su, X.5
Zhang, Y.6
Lu, A.7
Zhang, L.8
-
16
-
-
84924310031
-
Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing
-
[16] Castilho, M., Rodrigues, J., Pires, I., Gouveia, B., Pereira, M., Moseke, C., Groll, J., Ewald, A., Vorndran, E., Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication, 7, 2015, 015004.
-
(2015)
Biofabrication
, vol.7
, pp. 015004
-
-
Castilho, M.1
Rodrigues, J.2
Pires, I.3
Gouveia, B.4
Pereira, M.5
Moseke, C.6
Groll, J.7
Ewald, A.8
Vorndran, E.9
-
17
-
-
84952907047
-
Shaping of alginate–silica hybrid materials into microspheres through vibrating-nozzle technology and their use for the recovery of neodymium from aqueous solutions
-
[17] Roosen, J., Pype, J., Binnemans, K., Mullens, S., Shaping of alginate–silica hybrid materials into microspheres through vibrating-nozzle technology and their use for the recovery of neodymium from aqueous solutions. Ind. Eng. Chem. Res. 54 (2015), 12836–12846.
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, pp. 12836-12846
-
-
Roosen, J.1
Pype, J.2
Binnemans, K.3
Mullens, S.4
-
18
-
-
84874174050
-
Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties
-
[18] Ionita, M., Pandele, M.A., Iovu, H., Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr. Polym. 94 (2013), 339–344.
-
(2013)
Carbohydr. Polym.
, vol.94
, pp. 339-344
-
-
Ionita, M.1
Pandele, M.A.2
Iovu, H.3
-
19
-
-
84874130274
-
Novel microparticulate systems for the vaginal delivery of nystatin: development and characterization
-
[19] Martín-Villena, M., Fernández-Campos, F., Calpena-Campmany, A., Bozal-de Febrer, N., Ruiz-Martínez, M., Clares-Naveros, B., Novel microparticulate systems for the vaginal delivery of nystatin: development and characterization. Carbohydr. Polym. 94 (2013), 1–11.
-
(2013)
Carbohydr. Polym.
, vol.94
, pp. 1-11
-
-
Martín-Villena, M.1
Fernández-Campos, F.2
Calpena-Campmany, A.3
Bozal-de Febrer, N.4
Ruiz-Martínez, M.5
Clares-Naveros, B.6
-
20
-
-
84862807924
-
Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning
-
[20] He, Y., Zhang, N., Gong, Q., Qiu, H., Wang, W., Liu, Y., Gao, J., Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr. Polym. 88 (2012), 1100–1108.
-
(2012)
Carbohydr. Polym.
, vol.88
, pp. 1100-1108
-
-
He, Y.1
Zhang, N.2
Gong, Q.3
Qiu, H.4
Wang, W.5
Liu, Y.6
Gao, J.7
-
21
-
-
84921738396
-
In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering
-
[21] Liu, M., Dai, L., Shi, H., Xiong, S., Zhou, C., In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater. Sci. Eng. C 49 (2015), 700–712.
-
(2015)
Mater. Sci. Eng. C
, vol.49
, pp. 700-712
-
-
Liu, M.1
Dai, L.2
Shi, H.3
Xiong, S.4
Zhou, C.5
-
22
-
-
77954467411
-
Newly emerging applications of halloysite nanotubes: a review
-
[22] Du, M., Guo, B., Jia, D., Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 59 (2010), 574–582.
-
(2010)
Polym. Int.
, vol.59
, pp. 574-582
-
-
Du, M.1
Guo, B.2
Jia, D.3
-
23
-
-
84902449786
-
The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes
-
[23] Liu, M., Shen, Y., Ao, P., Dai, L., Liu, Z., Zhou, C., The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv. 4 (2014), 23540–23553.
-
(2014)
RSC Adv.
, vol.4
, pp. 23540-23553
-
-
Liu, M.1
Shen, Y.2
Ao, P.3
Dai, L.4
Liu, Z.5
Zhou, C.6
-
24
-
-
84875437500
-
Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering
-
[24] Liu, M., Wu, C., Jiao, Y., Xiong, S., Zhou, C., Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J. Mater. Chem. B 1 (2013), 2078–2089.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 2078-2089
-
-
Liu, M.1
Wu, C.2
Jiao, Y.3
Xiong, S.4
Zhou, C.5
-
25
-
-
84865545980
-
Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility
-
[25] Liu, M., Zhang, Y., Wu, C., Xiong, S., Zhou, C., Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 51 (2012), 566–575.
-
(2012)
Int. J. Biol. Macromol.
, vol.51
, pp. 566-575
-
-
Liu, M.1
Zhang, Y.2
Wu, C.3
Xiong, S.4
Zhou, C.5
-
26
-
-
76749120476
-
Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes
-
[26] Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., Liu, J., Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res. 44 (2010), 1489–1497.
-
(2010)
Water Res.
, vol.44
, pp. 1489-1497
-
-
Luo, P.1
Zhao, Y.2
Zhang, B.3
Liu, J.4
Yang, Y.5
Liu, J.6
-
27
-
-
84885022690
-
Functional polymer–clay nanotube composites with sustained release of chemical agents
-
[27] Lvov, Y., Abdullayev, E., Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38 (2013), 1690–1719.
-
(2013)
Prog. Polym. Sci.
, vol.38
, pp. 1690-1719
-
-
Lvov, Y.1
Abdullayev, E.2
-
28
-
-
84987842659
-
Halloysite clay nanotubes as carriers for curcumin: characterization and application
-
IEEE Trans. Nanotechnol.
-
[28] Dionisi, C., Hanafy, N., Nobile, C., De Giorgi, M.L., Rinaldi, R., Casciaro, S., Lvov, Y., Leporatti, S., Halloysite clay nanotubes as carriers for curcumin: characterization and application. IEEE Trans. Nanotechnol. 2016, 10.1109/TNANO.2016.2524072.
-
(2016)
-
-
Dionisi, C.1
Hanafy, N.2
Nobile, C.3
De Giorgi, M.L.4
Rinaldi, R.5
Casciaro, S.6
Lvov, Y.7
Leporatti, S.8
-
29
-
-
45749137219
-
Halloysite clay nanotubes for controlled release of protective agents
-
[29] Lvov, Y.M., Shchukin, D.G., Mohwald, H., Price, R.R., Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2 (2008), 814–820.
-
(2008)
ACS Nano
, vol.2
, pp. 814-820
-
-
Lvov, Y.M.1
Shchukin, D.G.2
Mohwald, H.3
Price, R.R.4
-
30
-
-
79955077389
-
Layer-by-layer assembly for drug delivery and related applications
-
[30] Ariga, K., McShane, M., Lvov, Y.M., Ji, Q., Hill, J.P., Layer-by-layer assembly for drug delivery and related applications. Expert Opin. Drug Deliv 8 (2011), 633–644.
-
(2011)
Expert Opin. Drug Deliv
, vol.8
, pp. 633-644
-
-
Ariga, K.1
McShane, M.2
Lvov, Y.M.3
Ji, Q.4
Hill, J.P.5
-
31
-
-
79960284251
-
Layer-by-layer self-assembled shells for drug delivery
-
[31] Ariga, K., Lvov, Y.M., Kawakami, K., Ji, Q., Hill, J.P., Layer-by-layer self-assembled shells for drug delivery. Adv. Drug Deliv. Rev. 63 (2011), 762–771.
-
(2011)
Adv. Drug Deliv. Rev.
, vol.63
, pp. 762-771
-
-
Ariga, K.1
Lvov, Y.M.2
Kawakami, K.3
Ji, Q.4
Hill, J.P.5
-
32
-
-
84872760025
-
Circulating tumor cells: the substrate of personalized medicine?
-
[32] Greene, B.T., Hughes, A.D., King, M.R., Circulating tumor cells: the substrate of personalized medicine?. Front. Oncol., 2, 2012, 69.
-
(2012)
Front. Oncol.
, vol.2
, pp. 69
-
-
Greene, B.T.1
Hughes, A.D.2
King, M.R.3
-
33
-
-
84963631974
-
Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells
-
[33] Liu, M., He, R., Yang, J., Zhao, W., Zhou, C., Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells. ACS Appl. Mater. Interfaces 8 (2016), 7709–7719.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 7709-7719
-
-
Liu, M.1
He, R.2
Yang, J.3
Zhao, W.4
Zhou, C.5
-
34
-
-
84887105242
-
In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices
-
[34] Fan, L., Zhang, J., Wang, A., In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J. Mater. Chem. B 1 (2013), 6261–6270.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 6261-6270
-
-
Fan, L.1
Zhang, J.2
Wang, A.3
-
35
-
-
84862820266
-
The removal of dye from aqueous solution using alginate-halloysite nanotube beads
-
[35] Liu, L., Wan, Y., Xie, Y., Zhai, R., Zhang, B., Liu, J., The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem. Eng. J. 187 (2012), 210–216.
-
(2012)
Chem. Eng. J.
, vol.187
, pp. 210-216
-
-
Liu, L.1
Wan, Y.2
Xie, Y.3
Zhai, R.4
Zhang, B.5
Liu, J.6
-
36
-
-
84875583364
-
Alginate gel beads filled with halloysite nanotubes
-
[36] Cavallaro, G., Gianguzza, A., Lazzara, G., Milioto, S., Piazzese, D., Alginate gel beads filled with halloysite nanotubes. Appl. Clay Sci. 72 (2013), 132–137.
-
(2013)
Appl. Clay Sci.
, vol.72
, pp. 132-137
-
-
Cavallaro, G.1
Gianguzza, A.2
Lazzara, G.3
Milioto, S.4
Piazzese, D.5
-
37
-
-
79952764744
-
Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels
-
[37] Chang, C., He, M., Zhou, J., Zhang, L., Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44 (2011), 1642–1648.
-
(2011)
Macromolecules
, vol.44
, pp. 1642-1648
-
-
Chang, C.1
He, M.2
Zhou, J.3
Zhang, L.4
-
38
-
-
84945931738
-
Characterizing the rheological properties of mozzarella cheese at shear rate and temperature conditions relevant to pizza baking
-
[38] Zhu, C., Brown, C., Gillies, G., Watkinson, P., Bronlund, J., Characterizing the rheological properties of mozzarella cheese at shear rate and temperature conditions relevant to pizza baking. LWT Food Sci. Technol. 64 (2015), 82–87.
-
(2015)
LWT Food Sci. Technol.
, vol.64
, pp. 82-87
-
-
Zhu, C.1
Brown, C.2
Gillies, G.3
Watkinson, P.4
Bronlund, J.5
-
39
-
-
0029183208
-
The influence of solid and sugar contents on rheological characteristics of akamu, a semi-liquid maize food
-
[39] Sopade, P., Filibus, T., The influence of solid and sugar contents on rheological characteristics of akamu, a semi-liquid maize food. J. Food Eng. 24 (1995), 197–211.
-
(1995)
J. Food Eng.
, vol.24
, pp. 197-211
-
-
Sopade, P.1
Filibus, T.2
-
40
-
-
84979997823
-
2 nanofluids and their main and interactive effects
-
2 nanofluids and their main and interactive effects. J. Appl. Polym. Sci., 133, 2016, 44062.
-
(2016)
J. Appl. Polym. Sci.
, vol.133
, pp. 44062
-
-
Mousazadeh, S.1
Shakouri, A.2
Hojjat, M.3
Etemad, S.G.4
Heris, S.Z.5
-
41
-
-
0037188992
-
Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films
-
[41] Safadi, B., Andrews, R., Grulke, E., Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84 (2002), 2660–2669.
-
(2002)
J. Appl. Polym. Sci.
, vol.84
, pp. 2660-2669
-
-
Safadi, B.1
Andrews, R.2
Grulke, E.3
-
42
-
-
84971280654
-
A simple method to interpret the rheological behaviour of intercalated polymer nanocomposites
-
[42] La Mantia, F., Scaffaro, R., Ceraulo, M., Mistretta, M., Dintcheva, N.T., Botta, L., A simple method to interpret the rheological behaviour of intercalated polymer nanocomposites. Composites Part B 98 (2016), 382–388.
-
(2016)
Composites Part B
, vol.98
, pp. 382-388
-
-
La Mantia, F.1
Scaffaro, R.2
Ceraulo, M.3
Mistretta, M.4
Dintcheva, N.T.5
Botta, L.6
-
43
-
-
34548230617
-
Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS
-
[43] Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grøndahl, L., Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8 (2007), 2533–2541.
-
(2007)
Biomacromolecules
, vol.8
, pp. 2533-2541
-
-
Lawrie, G.1
Keen, I.2
Drew, B.3
Chandler-Temple, A.4
Rintoul, L.5
Fredericks, P.6
Grøndahl, L.7
-
44
-
-
54849439377
-
Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane
-
[44] Yuan, P., Southon, P.D., Liu, Z., Green, M.E., Hook, J.M., Antill, S.J., Kepert, C.J., Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 112 (2008), 15742–15751.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 15742-15751
-
-
Yuan, P.1
Southon, P.D.2
Liu, Z.3
Green, M.E.4
Hook, J.M.5
Antill, S.J.6
Kepert, C.J.7
-
45
-
-
0000063588
-
Novel flocculating agent based on sodium alginate and acrylamide
-
[45] Tripathy, T., Pandey, S., Karmakar, N., Bhagat, R., Singh, R., Novel flocculating agent based on sodium alginate and acrylamide. Eur. Polym. J. 35 (1999), 2057–2072.
-
(1999)
Eur. Polym. J.
, vol.35
, pp. 2057-2072
-
-
Tripathy, T.1
Pandey, S.2
Karmakar, N.3
Bhagat, R.4
Singh, R.5
-
46
-
-
51149210640
-
The clay minerals halloysite and meta-halloysite
-
[46] Brindley, G., Robinson, K., MacEwan, D., The clay minerals halloysite and meta-halloysite. Nature 157 (1946), 225–226.
-
(1946)
Nature
, vol.157
, pp. 225-226
-
-
Brindley, G.1
Robinson, K.2
MacEwan, D.3
-
47
-
-
84957101346
-
Facile preparation of homogeneous and length controllable halloysite nanotubes by ultrasonic scission and uniform viscosity centrifugation
-
[47] Rong, R., Xu, X., Zhu, S., Li, B., Wang, X., Tang, K., Facile preparation of homogeneous and length controllable halloysite nanotubes by ultrasonic scission and uniform viscosity centrifugation. Chem. Eng. J. 291 (2016), 20–29.
-
(2016)
Chem. Eng. J.
, vol.291
, pp. 20-29
-
-
Rong, R.1
Xu, X.2
Zhu, S.3
Li, B.4
Wang, X.5
Tang, K.6
-
48
-
-
70449088920
-
The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering
-
[48] Murphy, C.M., Haugh, M.G., O'Brien, F.J., The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31 (2010), 461–466.
-
(2010)
Biomaterials
, vol.31
, pp. 461-466
-
-
Murphy, C.M.1
Haugh, M.G.2
O'Brien, F.J.3
-
49
-
-
84907253304
-
Recent advance in research on halloysite nanotubes-polymer nanocomposite
-
[49] Liu, M., Jia, Z., Jia, D., Zhou, C., Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39 (2014), 1498–1525.
-
(2014)
Prog. Polym. Sci.
, vol.39
, pp. 1498-1525
-
-
Liu, M.1
Jia, Z.2
Jia, D.3
Zhou, C.4
-
50
-
-
84927551488
-
Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals
-
[50] Liu, M., Huang, J., Luo, B., Zhou, C., Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int. J. Biol. Macromol. 78 (2015), 23–31.
-
(2015)
Int. J. Biol. Macromol.
, vol.78
, pp. 23-31
-
-
Liu, M.1
Huang, J.2
Luo, B.3
Zhou, C.4
-
51
-
-
84865118673
-
Novel polymer nanocomposite hydrogel with natural clay nanotubes
-
[51] Liu, M., Li, W., Rong, J., Zhou, C., Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym. Sci. 290 (2012), 895–905.
-
(2012)
Colloid Polym. Sci.
, vol.290
, pp. 895-905
-
-
Liu, M.1
Li, W.2
Rong, J.3
Zhou, C.4
-
52
-
-
2642548966
-
Thermal studies on natural and modified gums
-
[52] Zohuriaan, M., Shokrolahi, F., Thermal studies on natural and modified gums. Polym. Test. 23 (2004), 575–579.
-
(2004)
Polym. Test.
, vol.23
, pp. 575-579
-
-
Zohuriaan, M.1
Shokrolahi, F.2
-
53
-
-
84876383123
-
Chitin-natural clay nanotubes hybrid hydrogel
-
[53] Liu, M., Zhang, Y., Li, J., Zhou, C., Chitin-natural clay nanotubes hybrid hydrogel. Int. J. Biol. Macromol. 58 (2013), 23–30.
-
(2013)
Int. J. Biol. Macromol.
, vol.58
, pp. 23-30
-
-
Liu, M.1
Zhang, Y.2
Li, J.3
Zhou, C.4
-
54
-
-
84879975114
-
Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release
-
[54] Abdullayev, E., Lvov, Y., Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J. Mater. Chem. B 1 (2013), 2894–2903.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 2894-2903
-
-
Abdullayev, E.1
Lvov, Y.2
-
55
-
-
84948783707
-
In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application
-
[55] Liu, H.-Y., Du, L., Zhao, Y.-T., Tian, W.-Q., In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J. Nanomater., 2015, 2015, 685323.
-
(2015)
J. Nanomater.
, vol.2015
, pp. 685323
-
-
Liu, H.-Y.1
Du, L.2
Zhao, Y.-T.3
Tian, W.-Q.4
-
56
-
-
84964317543
-
Electrospun composite nanofiber membrane of poly (l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility
-
[56] Liu, H., Liu, W., Luo, B., Wen, W., Liu, M., Wang, X., Zhou, C., Electrospun composite nanofiber membrane of poly (l-lactide) and surface grafted chitin whiskers: fabrication, mechanical properties and cytocompatibility. Carbohydr. Polym. 147 (2016), 216–225.
-
(2016)
Carbohydr. Polym.
, vol.147
, pp. 216-225
-
-
Liu, H.1
Liu, W.2
Luo, B.3
Wen, W.4
Liu, M.5
Wang, X.6
Zhou, C.7
-
57
-
-
84962591913
-
Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes
-
[57] Luo, C., Zou, Z., Luo, B., Wen, W., Li, H., Liu, M., Zhou, C., Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes. Appl. Surf. Sci. 369 (2016), 82–91.
-
(2016)
Appl. Surf. Sci.
, vol.369
, pp. 82-91
-
-
Luo, C.1
Zou, Z.2
Luo, B.3
Wen, W.4
Li, H.5
Liu, M.6
Zhou, C.7
|