메뉴 건너뛰기




Volumn 221, Issue , 2017, Pages 85-93

Cognitive Quaternion Valued Neural Network and some applications

Author keywords

Forecasting; Meta cognitive; Quaternion Valued Neural Networks; Renewable energy

Indexed keywords

CHAOS THEORY; CHAOTIC SYSTEMS; FORECASTING;

EID: 84992064863     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.09.060     Document Type: Article
Times cited : (42)

References (54)
  • 1
    • 0033991209 scopus 로고    scopus 로고
    • Artificial neural network visual model for image quality enhancement
    • [1] Chen, S., He, Z., Grant, P.M., Artificial neural network visual model for image quality enhancement. Neurocomputing 30 (2000), 339–346.
    • (2000) Neurocomputing , vol.30 , pp. 339-346
    • Chen, S.1    He, Z.2    Grant, P.M.3
  • 2
    • 20444479798 scopus 로고    scopus 로고
    • The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm
    • [2] Aouiti, C., Alimi, A.M., Karray, F., Maalej, A., The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm. Fuzzy Sets Syst. 154 (2005), 251–274.
    • (2005) Fuzzy Sets Syst. , vol.154 , pp. 251-274
    • Aouiti, C.1    Alimi, A.M.2    Karray, F.3    Maalej, A.4
  • 3
    • 21944448838 scopus 로고    scopus 로고
    • Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning
    • [3] Bayro-Corrochano, E., Vallejo, R., Arana-Daniel, N., Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67 (2005), 54–105.
    • (2005) Neurocomputing , vol.67 , pp. 54-105
    • Bayro-Corrochano, E.1    Vallejo, R.2    Arana-Daniel, N.3
  • 4
    • 33748418720 scopus 로고    scopus 로고
    • Symmetry axis extraction by a neural network
    • [4] Fukushima, K., Kikuchi, M., Symmetry axis extraction by a neural network. Neurocomputing 69 (2006), 1827–1836.
    • (2006) Neurocomputing , vol.69 , pp. 1827-1836
    • Fukushima, K.1    Kikuchi, M.2
  • 5
    • 58149460022 scopus 로고    scopus 로고
    • Single-layered complex-valued neural network for real-valued classification problems
    • [5] Amin, Md.F., Murase, K., Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72 (2009), 945–955.
    • (2009) Neurocomputing , vol.72 , pp. 945-955
    • Amin, M.F.1    Murase, K.2
  • 6
    • 78649483332 scopus 로고    scopus 로고
    • Thermal condition monitoring system using log-polar mapping, quaternion correlation and max-product fuzzy neural network classification
    • [6] Wong, W.-K., Loo, C.-K., Lim, W.-S., Tan, P.-N., Thermal condition monitoring system using log-polar mapping, quaternion correlation and max-product fuzzy neural network classification. Neurocomputing 74 (2010), 164–177.
    • (2010) Neurocomputing , vol.74 , pp. 164-177
    • Wong, W.-K.1    Loo, C.-K.2    Lim, W.-S.3    Tan, P.-N.4
  • 7
    • 84937813225 scopus 로고    scopus 로고
    • Learning from adaptive neural network control of an underactuated rigid spacecraft
    • [7] Zeng, W., Wang, Q., Learning from adaptive neural network control of an underactuated rigid spacecraft. Neurocomputing 168 (2015), 690–697.
    • (2015) Neurocomputing , vol.168 , pp. 690-697
    • Zeng, W.1    Wang, Q.2
  • 8
    • 84937814727 scopus 로고    scopus 로고
    • A fast and efficient pre-training method based on layer-by-layer maximum discrimination for deep neural networks
    • [8] Seyyedsalehi, S.Z., Seyyedsalehi, S.A., A fast and efficient pre-training method based on layer-by-layer maximum discrimination for deep neural networks. Neurocomputing 168 (2015), 669–680.
    • (2015) Neurocomputing , vol.168 , pp. 669-680
    • Seyyedsalehi, S.Z.1    Seyyedsalehi, S.A.2
  • 9
    • 84950150143 scopus 로고    scopus 로고
    • Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force
    • [9] Hoang, N.-B., Kang, H.-J., Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 188 (2016), 12–22.
    • (2016) Neurocomputing , vol.188 , pp. 12-22
    • Hoang, N.-B.1    Kang, H.-J.2
  • 10
    • 84960929615 scopus 로고    scopus 로고
    • Advanced artificial neural network classification for detecting preterm births using EHG records
    • [10] Fergus, P., Idowu, I., Hussain, A., Dobbins, C., Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing 188 (2016), 42–49.
    • (2016) Neurocomputing , vol.188 , pp. 42-49
    • Fergus, P.1    Idowu, I.2    Hussain, A.3    Dobbins, C.4
  • 11
    • 84959322087 scopus 로고    scopus 로고
    • Global exponential stability of Clifford-valued recurrent neural networks
    • [11] Zhu, J., Sun, J., Global exponential stability of Clifford-valued recurrent neural networks. Neurocomputing 173 (2016), 685–689.
    • (2016) Neurocomputing , vol.173 , pp. 685-689
    • Zhu, J.1    Sun, J.2
  • 12
    • 35048882574 scopus 로고    scopus 로고
    • A model of hopfield-type quaternion neural networks and its energy function
    • N.R. Pal N. Kasabov R.K. Mudi S. Pal S.K. Parui Springer Berlin Heidelberg New York
    • [12] Yoshida, M., Kuroe, Y., Mori, T., A model of hopfield-type quaternion neural networks and its energy function. Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K., (eds.) Neural Information Processing, Lecture Notes in Computer Science, 3316, 2004, Springer Berlin Heidelberg, New York, 110–115.
    • (2004) Neural Information Processing, Lecture Notes in Computer Science , vol.3316 , pp. 110-115
    • Yoshida, M.1    Kuroe, Y.2    Mori, T.3
  • 13
    • 84858248124 scopus 로고    scopus 로고
    • Rethinking Quaternions: Theory and Computation
    • Morgan & Claypool, University of California Berkeley
    • [13] Goldman, R., Rethinking Quaternions: Theory and Computation. 2010, Morgan & Claypool, University of California, Berkeley.
    • (2010)
    • Goldman, R.1
  • 14
    • 84891585132 scopus 로고    scopus 로고
    • Complex-Valued Neural Networks: Advances and Applications
    • Wiley-IEEE Press, John Wiley & Sons, Inc Hoboken, New Jersey
    • [14] Hirose, A., Complex-Valued Neural Networks: Advances and Applications. 2013, Wiley-IEEE Press, John Wiley & Sons, Inc, Hoboken, New Jersey.
    • (2013)
    • Hirose, A.1
  • 15
    • 33745216132 scopus 로고    scopus 로고
    • A solution to the 4-bit parity problem with a single quaternary neuron
    • [15] Nitta, T., A solution to the 4-bit parity problem with a single quaternary neuron. Neural Inf. Process. – Lett. Rev. 5:2 (2004), 33–39.
    • (2004) Neural Inf. Process. – Lett. Rev. , vol.5 , Issue.2 , pp. 33-39
    • Nitta, T.1
  • 16
    • 84900129083 scopus 로고    scopus 로고
    • Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters
    • IGI Global New York
    • [16] Nitta, T., Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. 2009, IGI Global, New York.
    • (2009)
    • Nitta, T.1
  • 18
    • 0031104970 scopus 로고    scopus 로고
    • Multilayer perceptions to approximate functions Quaternion-valued
    • [18] Arena, P., Fortuna, L., Muscatoand, G., Xibilia, M.G., Multilayer perceptions to approximate functions Quaternion-valued. Neural Netw. 10:2 (1997), 335–342.
    • (1997) Neural Netw. , vol.10 , Issue.2 , pp. 335-342
    • Arena, P.1    Fortuna, L.2    Muscatoand, G.3    Xibilia, M.G.4
  • 19
    • 0004219860 scopus 로고
    • Lectures on Quaternions
    • Hodges and Smith Dublin, Ireland
    • [19] Hamilton, W.R., Lectures on Quaternions. 1853, Hodges and Smith, Dublin, Ireland.
    • (1853)
    • Hamilton, W.R.1
  • 20
    • 84870734515 scopus 로고    scopus 로고
    • Quaternionic multilayer perceptron with local analyticity
    • [20] Isokawa, T., Nishimura, H., Matsui, N., Quaternionic multilayer perceptron with local analyticity. Information 3 (2002), 756–770.
    • (2002) Information , vol.3 , pp. 756-770
    • Isokawa, T.1    Nishimura, H.2    Matsui, N.3
  • 22
    • 84860235672 scopus 로고    scopus 로고
    • Metacognitive learning in a fully complex valued radial basis function neural network
    • [22] Savitha, R., Suresh, S., Sundararajan, N., Metacognitive learning in a fully complex valued radial basis function neural network. Neural Comput. 24:5 (2012), 1297–1328.
    • (2012) Neural Comput. , vol.24 , Issue.5 , pp. 1297-1328
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 23
    • 84856317703 scopus 로고    scopus 로고
    • Meta-cognitive neural network for classification problems in a sequential learning framework
    • [23] Sateesh Babu, G., Suresh, S., Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing 81:1 (2012), 86–96.
    • (2012) Neurocomputing , vol.81 , Issue.1 , pp. 86-96
    • Sateesh Babu, G.1    Suresh, S.2
  • 24
    • 84897710607 scopus 로고    scopus 로고
    • A metacognitive neuro-fuzzy inference system (mc-fis) for sequential classification problems
    • [24] Subramanian, K., Suresh, S., Sundararajan, N., A metacognitive neuro-fuzzy inference system (mc-fis) for sequential classification problems. IEEE Trans. Fuzzy Syst. 21:6 (2013), 1080–1095.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.6 , pp. 1080-1095
    • Subramanian, K.1    Suresh, S.2    Sundararajan, N.3
  • 26
    • 77957775546 scopus 로고
    • Metamemory: a theoretical framework and new findings
    • [26] Nelson, T.O., Narens, L., Metamemory: a theoretical framework and new findings. Psychol. Learn. Motiv. 26 (1990), 125–173.
    • (1990) Psychol. Learn. Motiv. , vol.26 , pp. 125-173
    • Nelson, T.O.1    Narens, L.2
  • 28
    • 80051550143 scopus 로고    scopus 로고
    • Quaternion-valued nonlinear adaptive filtering
    • [28] Ujang, B.C., Took, C.C., Mandic, D.P., Quaternion-valued nonlinear adaptive filtering. IEEE Trans. Neural Netw. 22:8 (2011), 1193–1206.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.8 , pp. 1193-1206
    • Ujang, B.C.1    Took, C.C.2    Mandic, D.P.3
  • 29
    • 8344264584 scopus 로고    scopus 로고
    • Quaternion neural network and its application, knowledge-based intelligent information and engineering systems
    • [29] Isokawa, T., Kusakabe, T., Matsui, N., Peper, F., Quaternion neural network and its application, knowledge-based intelligent information and engineering systems. Lect. Notes Comput. Sci. 2774 (2003), 318–324.
    • (2003) Lect. Notes Comput. Sci. , vol.2774 , pp. 318-324
    • Isokawa, T.1    Kusakabe, T.2    Matsui, N.3    Peper, F.4
  • 34
    • 84997405657 scopus 로고    scopus 로고
    • Quaternions and octonions in mechanics
    • [34] Kapla, A., Quaternions and octonions in mechanics. Rev. de la Union Math. Argent. 49:2 (2008), 45–53.
    • (2008) Rev. de la Union Math. Argent. , vol.49 , Issue.2 , pp. 45-53
    • Kapla, A.1
  • 35
    • 0035503560 scopus 로고    scopus 로고
    • Hypercomplex signals – a novel extension of the analytic signal to the multidimensional case
    • [35] Bülow, T., Sommer, G., Hypercomplex signals – a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49:11 (2001), 2844–2852.
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.11 , pp. 2844-2852
    • Bülow, T.1    Sommer, G.2
  • 36
    • 0003499969 scopus 로고    scopus 로고
    • Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images (Ph.D. thesis)
    • University of Kiel
    • [36] Bülow, T., Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images (Ph.D. thesis). 1999, University of Kiel http://www.uni-kiel.de/journals/receive/jportal_jparticle_00000190.
    • (1999)
    • Bülow, T.1
  • 37
    • 84862823570 scopus 로고    scopus 로고
    • Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
    • [37] Chandra, R., Zhang, M., Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86 (2012), 116–123.
    • (2012) Neurocomputing , vol.86 , pp. 116-123
    • Chandra, R.1    Zhang, M.2
  • 38
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: artificial neural network
    • [38] Karunasinghe, D.S.K., Liong, S.-Y., Chaotic time series prediction with a global model: artificial neural network. J. Hydrol. 323 (2006), 92–105.
    • (2006) J. Hydrol. , vol.323 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.-Y.2
  • 40
    • 84858339896 scopus 로고    scopus 로고
    • Chaotic time series prediction with employment of ant colony optimization
    • [40] Gromov, V.A., Shulga, A.N., Chaotic time series prediction with employment of ant colony optimization. Expert Syst. Appl. 39 (2012), 8474–8478.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 8474-8478
    • Gromov, V.A.1    Shulga, A.N.2
  • 41
    • 61849164592 scopus 로고    scopus 로고
    • Fuzzy prediction architecture using recurrent neural networks
    • [41] Graves, D., Pedrycz, W., Fuzzy prediction architecture using recurrent neural networks. Neurocomputing 72 (2009), 1668–1678.
    • (2009) Neurocomputing , vol.72 , pp. 1668-1678
    • Graves, D.1    Pedrycz, W.2
  • 42
    • 84862785062 scopus 로고
    • Deterministic non-periodic flows
    • [42] Lorenz, E., Deterministic non-periodic flows. J. Atmos. Sci. 20 (1963), 267–285.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 267-285
    • Lorenz, E.1
  • 43
    • 84897694851 scopus 로고    scopus 로고
    • Generalized dynamical fuzzy model for identification and prediction
    • [43] Saad Saoud, L., Rahmoune, F., Tourtchine, V., Baddari, K., Generalized dynamical fuzzy model for identification and prediction. J. Intell. Fuzzy Syst. 26:4 (2014), 1771–1785.
    • (2014) J. Intell. Fuzzy Syst. , vol.26 , Issue.4 , pp. 1771-1785
    • Saad Saoud, L.1    Rahmoune, F.2    Tourtchine, V.3    Baddari, K.4
  • 44
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • [44] Jang, J.-S.R., ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23:3 (1993), 665–685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 45
    • 84862806176 scopus 로고    scopus 로고
    • An evolving neuro-fuzzy technique for system state forecasting
    • [45] Wang, W., Li, D.Z., Vrbanek, J., An evolving neuro-fuzzy technique for system state forecasting. Neurocomputing 87 (2012), 111–119.
    • (2012) Neurocomputing , vol.87 , pp. 111-119
    • Wang, W.1    Li, D.Z.2    Vrbanek, J.3
  • 46
    • 80255133268 scopus 로고    scopus 로고
    • A new approach for time series prediction using ensembles of ANFIS models
    • [46] Melin, P., Soto, J., Castillo, O., Soria, J., A new approach for time series prediction using ensembles of ANFIS models. Expert Syst. Appl. 39 (2012), 3494–3506.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3494-3506
    • Melin, P.1    Soto, J.2    Castillo, O.3    Soria, J.4
  • 47
    • 33847321021 scopus 로고    scopus 로고
    • Fuzzy prediction of chaotic time series based on singular value decomposition
    • [47] Gu, H., Wang, H., Fuzzy prediction of chaotic time series based on singular value decomposition. Appl. Math. Comput. 185:2 (2007), 1171–1185.
    • (2007) Appl. Math. Comput. , vol.185 , Issue.2 , pp. 1171-1185
    • Gu, H.1    Wang, H.2
  • 48
    • 79955573824 scopus 로고    scopus 로고
    • Prediction of chaotic time series using computational intelligence
    • [48] Samanta, B., Prediction of chaotic time series using computational intelligence. Expert Syst. Appl. 38 (2011), 11406–11411.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11406-11411
    • Samanta, B.1
  • 49
    • 84864482334 scopus 로고    scopus 로고
    • Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
    • [49] Qiao, J.F., Han, H.G., Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach. Automatica 48:8 (2012), 1729–1734.
    • (2012) Automatica , vol.48 , Issue.8 , pp. 1729-1734
    • Qiao, J.F.1    Han, H.G.2
  • 50
    • 83655163862 scopus 로고    scopus 로고
    • Extended and unscented Kalman filtering based feedforward neural networks for time series prediction
    • [50] Wu, X., Wang, Y., Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl. Math. Model. 36:3 (2012), 1123–1131.
    • (2012) Appl. Math. Model. , vol.36 , Issue.3 , pp. 1123-1131
    • Wu, X.1    Wang, Y.2
  • 51
    • 80052944192 scopus 로고    scopus 로고
    • Particle swarm optimization of T-S fuzzy model
    • B.-Y. Cao S. Chen G. Wang S. Guo Springer-Verlag Berlin Heidelberg
    • [51] Ma, M., Zhang, L.B., Sun, Y., Particle swarm optimization of T-S fuzzy model. Cao, B.-Y., Chen, S., Wang, G., Guo, S., (eds.) Quantitative Logic and Soft Computing, 2010, Springer-Verlag, Berlin Heidelberg, 447–452.
    • (2010) Quantitative Logic and Soft Computing , pp. 447-452
    • Ma, M.1    Zhang, L.B.2    Sun, Y.3
  • 52
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • [52] Angelov, P.P., Filev, D.P., An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. 34:1 (2004), 484–498.
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 53
    • 0031272838 scopus 로고    scopus 로고
    • Forecasting time series with genetic fuzzy predictor ensemble
    • [53] Kim, D., Kim, C., Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans. Fuzzy Syst. 5:4 (1997), 523–535.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 523-535
    • Kim, D.1    Kim, C.2
  • 54
    • 84865002118 scopus 로고    scopus 로고
    • SoHyFIS-Yager: a self-organizing Yager based Hybrid neural fuzzy inference system
    • [54] Tung, S.W., Quek, C., Guan, C., SoHyFIS-Yager: a self-organizing Yager based Hybrid neural fuzzy inference system. Expert Syst. Appl. 39 (2012), 12759–12771.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 12759-12771
    • Tung, S.W.1    Quek, C.2    Guan, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.