-
1
-
-
0033991209
-
Artificial neural network visual model for image quality enhancement
-
[1] Chen, S., He, Z., Grant, P.M., Artificial neural network visual model for image quality enhancement. Neurocomputing 30 (2000), 339–346.
-
(2000)
Neurocomputing
, vol.30
, pp. 339-346
-
-
Chen, S.1
He, Z.2
Grant, P.M.3
-
2
-
-
20444479798
-
The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm
-
[2] Aouiti, C., Alimi, A.M., Karray, F., Maalej, A., The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm. Fuzzy Sets Syst. 154 (2005), 251–274.
-
(2005)
Fuzzy Sets Syst.
, vol.154
, pp. 251-274
-
-
Aouiti, C.1
Alimi, A.M.2
Karray, F.3
Maalej, A.4
-
3
-
-
21944448838
-
Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning
-
[3] Bayro-Corrochano, E., Vallejo, R., Arana-Daniel, N., Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67 (2005), 54–105.
-
(2005)
Neurocomputing
, vol.67
, pp. 54-105
-
-
Bayro-Corrochano, E.1
Vallejo, R.2
Arana-Daniel, N.3
-
4
-
-
33748418720
-
Symmetry axis extraction by a neural network
-
[4] Fukushima, K., Kikuchi, M., Symmetry axis extraction by a neural network. Neurocomputing 69 (2006), 1827–1836.
-
(2006)
Neurocomputing
, vol.69
, pp. 1827-1836
-
-
Fukushima, K.1
Kikuchi, M.2
-
5
-
-
58149460022
-
Single-layered complex-valued neural network for real-valued classification problems
-
[5] Amin, Md.F., Murase, K., Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72 (2009), 945–955.
-
(2009)
Neurocomputing
, vol.72
, pp. 945-955
-
-
Amin, M.F.1
Murase, K.2
-
6
-
-
78649483332
-
Thermal condition monitoring system using log-polar mapping, quaternion correlation and max-product fuzzy neural network classification
-
[6] Wong, W.-K., Loo, C.-K., Lim, W.-S., Tan, P.-N., Thermal condition monitoring system using log-polar mapping, quaternion correlation and max-product fuzzy neural network classification. Neurocomputing 74 (2010), 164–177.
-
(2010)
Neurocomputing
, vol.74
, pp. 164-177
-
-
Wong, W.-K.1
Loo, C.-K.2
Lim, W.-S.3
Tan, P.-N.4
-
7
-
-
84937813225
-
Learning from adaptive neural network control of an underactuated rigid spacecraft
-
[7] Zeng, W., Wang, Q., Learning from adaptive neural network control of an underactuated rigid spacecraft. Neurocomputing 168 (2015), 690–697.
-
(2015)
Neurocomputing
, vol.168
, pp. 690-697
-
-
Zeng, W.1
Wang, Q.2
-
8
-
-
84937814727
-
A fast and efficient pre-training method based on layer-by-layer maximum discrimination for deep neural networks
-
[8] Seyyedsalehi, S.Z., Seyyedsalehi, S.A., A fast and efficient pre-training method based on layer-by-layer maximum discrimination for deep neural networks. Neurocomputing 168 (2015), 669–680.
-
(2015)
Neurocomputing
, vol.168
, pp. 669-680
-
-
Seyyedsalehi, S.Z.1
Seyyedsalehi, S.A.2
-
9
-
-
84950150143
-
Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force
-
[9] Hoang, N.-B., Kang, H.-J., Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 188 (2016), 12–22.
-
(2016)
Neurocomputing
, vol.188
, pp. 12-22
-
-
Hoang, N.-B.1
Kang, H.-J.2
-
10
-
-
84960929615
-
Advanced artificial neural network classification for detecting preterm births using EHG records
-
[10] Fergus, P., Idowu, I., Hussain, A., Dobbins, C., Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing 188 (2016), 42–49.
-
(2016)
Neurocomputing
, vol.188
, pp. 42-49
-
-
Fergus, P.1
Idowu, I.2
Hussain, A.3
Dobbins, C.4
-
11
-
-
84959322087
-
Global exponential stability of Clifford-valued recurrent neural networks
-
[11] Zhu, J., Sun, J., Global exponential stability of Clifford-valued recurrent neural networks. Neurocomputing 173 (2016), 685–689.
-
(2016)
Neurocomputing
, vol.173
, pp. 685-689
-
-
Zhu, J.1
Sun, J.2
-
12
-
-
35048882574
-
A model of hopfield-type quaternion neural networks and its energy function
-
N.R. Pal N. Kasabov R.K. Mudi S. Pal S.K. Parui Springer Berlin Heidelberg New York
-
[12] Yoshida, M., Kuroe, Y., Mori, T., A model of hopfield-type quaternion neural networks and its energy function. Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K., (eds.) Neural Information Processing, Lecture Notes in Computer Science, 3316, 2004, Springer Berlin Heidelberg, New York, 110–115.
-
(2004)
Neural Information Processing, Lecture Notes in Computer Science
, vol.3316
, pp. 110-115
-
-
Yoshida, M.1
Kuroe, Y.2
Mori, T.3
-
13
-
-
84858248124
-
Rethinking Quaternions: Theory and Computation
-
Morgan & Claypool, University of California Berkeley
-
[13] Goldman, R., Rethinking Quaternions: Theory and Computation. 2010, Morgan & Claypool, University of California, Berkeley.
-
(2010)
-
-
Goldman, R.1
-
14
-
-
84891585132
-
Complex-Valued Neural Networks: Advances and Applications
-
Wiley-IEEE Press, John Wiley & Sons, Inc Hoboken, New Jersey
-
[14] Hirose, A., Complex-Valued Neural Networks: Advances and Applications. 2013, Wiley-IEEE Press, John Wiley & Sons, Inc, Hoboken, New Jersey.
-
(2013)
-
-
Hirose, A.1
-
15
-
-
33745216132
-
A solution to the 4-bit parity problem with a single quaternary neuron
-
[15] Nitta, T., A solution to the 4-bit parity problem with a single quaternary neuron. Neural Inf. Process. – Lett. Rev. 5:2 (2004), 33–39.
-
(2004)
Neural Inf. Process. – Lett. Rev.
, vol.5
, Issue.2
, pp. 33-39
-
-
Nitta, T.1
-
16
-
-
84900129083
-
Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters
-
IGI Global New York
-
[16] Nitta, T., Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. 2009, IGI Global, New York.
-
(2009)
-
-
Nitta, T.1
-
17
-
-
0028571350
-
Neural networks for quaternion-valued function approximation
-
[17] P. Arena, L. Fortuna, L. Occhipinti, M.G. Xibilia, Neural networks for quaternion-valued function approximation, in: Proceeings of the IEEE International Symposium on Circuits and Systems, ISCAS' 94, 30 May–02 June 1994, London, 1994, pp. 307–310.
-
(1994)
Proceeings of the IEEE International Symposium on Circuits and Systems, ISCAS' 94, 30 May–02 June 1994, London
, pp. 307-310
-
-
Arena, P.1
Fortuna, L.2
Occhipinti, L.3
Xibilia, M.G.4
-
18
-
-
0031104970
-
Multilayer perceptions to approximate functions Quaternion-valued
-
[18] Arena, P., Fortuna, L., Muscatoand, G., Xibilia, M.G., Multilayer perceptions to approximate functions Quaternion-valued. Neural Netw. 10:2 (1997), 335–342.
-
(1997)
Neural Netw.
, vol.10
, Issue.2
, pp. 335-342
-
-
Arena, P.1
Fortuna, L.2
Muscatoand, G.3
Xibilia, M.G.4
-
19
-
-
0004219860
-
Lectures on Quaternions
-
Hodges and Smith Dublin, Ireland
-
[19] Hamilton, W.R., Lectures on Quaternions. 1853, Hodges and Smith, Dublin, Ireland.
-
(1853)
-
-
Hamilton, W.R.1
-
20
-
-
84870734515
-
Quaternionic multilayer perceptron with local analyticity
-
[20] Isokawa, T., Nishimura, H., Matsui, N., Quaternionic multilayer perceptron with local analyticity. Information 3 (2002), 756–770.
-
(2002)
Information
, vol.3
, pp. 756-770
-
-
Isokawa, T.1
Nishimura, H.2
Matsui, N.3
-
21
-
-
0029463664
-
A quaternary version of the back-propagation algorithm
-
[21] T. Nitta, A quaternary version of the back-propagation algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 5, 27 November–01 December 1995, Perth, WA, 1995, pp. 2753–2756.
-
(1995)
Proceedings of the IEEE International Conference on Neural Networks, vol. 5, 27 November–01 December 1995, Perth, WA
, pp. 2753-2756
-
-
Nitta, T.1
-
22
-
-
84860235672
-
Metacognitive learning in a fully complex valued radial basis function neural network
-
[22] Savitha, R., Suresh, S., Sundararajan, N., Metacognitive learning in a fully complex valued radial basis function neural network. Neural Comput. 24:5 (2012), 1297–1328.
-
(2012)
Neural Comput.
, vol.24
, Issue.5
, pp. 1297-1328
-
-
Savitha, R.1
Suresh, S.2
Sundararajan, N.3
-
23
-
-
84856317703
-
Meta-cognitive neural network for classification problems in a sequential learning framework
-
[23] Sateesh Babu, G., Suresh, S., Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing 81:1 (2012), 86–96.
-
(2012)
Neurocomputing
, vol.81
, Issue.1
, pp. 86-96
-
-
Sateesh Babu, G.1
Suresh, S.2
-
24
-
-
84897710607
-
A metacognitive neuro-fuzzy inference system (mc-fis) for sequential classification problems
-
[24] Subramanian, K., Suresh, S., Sundararajan, N., A metacognitive neuro-fuzzy inference system (mc-fis) for sequential classification problems. IEEE Trans. Fuzzy Syst. 21:6 (2013), 1080–1095.
-
(2013)
IEEE Trans. Fuzzy Syst.
, vol.21
, Issue.6
, pp. 1080-1095
-
-
Subramanian, K.1
Suresh, S.2
Sundararajan, N.3
-
25
-
-
84885226612
-
A Meta-cognitive Interval Type-2 fuzzy inference system classifier and its projection based learning algorithm
-
[25] K. Subramanian, A. Das, S. Suresh, R. Savitha, A Meta-cognitive Interval Type-2 fuzzy inference system classifier and its projection based learning algorithm, in: Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS, 16–19 April 2013, Singapore, 2013, pp. 48–55.
-
(2013)
Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS, 16–19 April 2013, Singapore
, pp. 48-55
-
-
Subramanian, K.1
Das, A.2
Suresh, S.3
Savitha, R.4
-
26
-
-
77957775546
-
Metamemory: a theoretical framework and new findings
-
[26] Nelson, T.O., Narens, L., Metamemory: a theoretical framework and new findings. Psychol. Learn. Motiv. 26 (1990), 125–173.
-
(1990)
Psychol. Learn. Motiv.
, vol.26
, pp. 125-173
-
-
Nelson, T.O.1
Narens, L.2
-
27
-
-
84894198196
-
PolSAR land classification by using quaternion-valued neural networks
-
[27] F. Shang, A. Hirose, PolSAR land classification by using quaternion-valued neural networks, in: Proceedings of the Asia-Pacific Conference on Synthetic Aperture Radar, APSAR, 23–27 September 2013, Tsukuba, Japan, 2013, pp. 593–596.
-
(2013)
Proceedings of the Asia-Pacific Conference on Synthetic Aperture Radar, APSAR, 23–27 September 2013, Tsukuba, Japan
, pp. 593-596
-
-
Shang, F.1
Hirose, A.2
-
28
-
-
80051550143
-
Quaternion-valued nonlinear adaptive filtering
-
[28] Ujang, B.C., Took, C.C., Mandic, D.P., Quaternion-valued nonlinear adaptive filtering. IEEE Trans. Neural Netw. 22:8 (2011), 1193–1206.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.8
, pp. 1193-1206
-
-
Ujang, B.C.1
Took, C.C.2
Mandic, D.P.3
-
29
-
-
8344264584
-
Quaternion neural network and its application, knowledge-based intelligent information and engineering systems
-
[29] Isokawa, T., Kusakabe, T., Matsui, N., Peper, F., Quaternion neural network and its application, knowledge-based intelligent information and engineering systems. Lect. Notes Comput. Sci. 2774 (2003), 318–324.
-
(2003)
Lect. Notes Comput. Sci.
, vol.2774
, pp. 318-324
-
-
Isokawa, T.1
Kusakabe, T.2
Matsui, N.3
Peper, F.4
-
30
-
-
40649096137
-
A new scheme for color night vision by quaternion neural network
-
[30] H. Kusamichi, T. Isokawa, N. Matsui, A new scheme for color night vision by quaternion neural network, in: Proceedings of the 2nd International Conference on Autonomous Robots and Agents, 13–15 December, 2004, Palmerston North, New Zealand, 2004.
-
(2004)
Proceedings of the 2nd International Conference on Autonomous Robots and Agents, 13–15 December, 2004, Palmerston North, New Zealand
-
-
Kusamichi, H.1
Isokawa, T.2
Matsui, N.3
-
31
-
-
84873979148
-
Gait recognition using the magnitude and phase of quaternion wavelet transform
-
[31] C.-R. Li, J.-P. Li, X.-C. Yang, Z.-W. Liang, Gait recognition using the magnitude and phase of quaternion wavelet transform, in: Proceedings of the International Conference on Wavelet Active Media Technology and Information Processing, ICWAMTIP, Chengdu, 2012, pp. 322–324.
-
(2012)
Proceedings of the International Conference on Wavelet Active Media Technology and Information Processing, ICWAMTIP, Chengdu
, pp. 322-324
-
-
Li, C.-R.1
Li, J.-P.2
Yang, X.-C.3
Liang, Z.-W.4
-
32
-
-
84902525721
-
Design of control systems using quaternion neural network and its application to inverse kinematics of robot manipulator
-
[32] Y. Cui, K. Takahashi, M. Hashimoto, Design of control systems using quaternion neural network and its application to inverse kinematics of robot manipulator, in: Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Kobe International Conference Center, 15–17 December, 2013 Kobe, Japan, 2013, pp. 527–532.
-
(2013)
Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Kobe International Conference Center, 15–17 December, 2013 Kobe, Japan
, pp. 527-532
-
-
Cui, Y.1
Takahashi, K.2
Hashimoto, M.3
-
33
-
-
84997471359
-
Quaternion based thermal condition monitoring system
-
[33] W.K. Wong, C.K. Loo, W.S. Lim, P.N. Tan, Quaternion based thermal condition monitoring system, in: Proceedings of the Natural Computing Information and Communications Technology, vol. 2, 2010, pp. 352–362.
-
(2010)
Proceedings of the Natural Computing Information and Communications Technology
, vol.2
, pp. 352-362
-
-
Wong, W.K.1
Loo, C.K.2
Lim, W.S.3
Tan, P.N.4
-
34
-
-
84997405657
-
Quaternions and octonions in mechanics
-
[34] Kapla, A., Quaternions and octonions in mechanics. Rev. de la Union Math. Argent. 49:2 (2008), 45–53.
-
(2008)
Rev. de la Union Math. Argent.
, vol.49
, Issue.2
, pp. 45-53
-
-
Kapla, A.1
-
35
-
-
0035503560
-
Hypercomplex signals – a novel extension of the analytic signal to the multidimensional case
-
[35] Bülow, T., Sommer, G., Hypercomplex signals – a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49:11 (2001), 2844–2852.
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.11
, pp. 2844-2852
-
-
Bülow, T.1
Sommer, G.2
-
36
-
-
0003499969
-
Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images (Ph.D. thesis)
-
University of Kiel
-
[36] Bülow, T., Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images (Ph.D. thesis). 1999, University of Kiel http://www.uni-kiel.de/journals/receive/jportal_jparticle_00000190.
-
(1999)
-
-
Bülow, T.1
-
37
-
-
84862823570
-
Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
-
[37] Chandra, R., Zhang, M., Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86 (2012), 116–123.
-
(2012)
Neurocomputing
, vol.86
, pp. 116-123
-
-
Chandra, R.1
Zhang, M.2
-
38
-
-
33646572227
-
Chaotic time series prediction with a global model: artificial neural network
-
[38] Karunasinghe, D.S.K., Liong, S.-Y., Chaotic time series prediction with a global model: artificial neural network. J. Hydrol. 323 (2006), 92–105.
-
(2006)
J. Hydrol.
, vol.323
, pp. 92-105
-
-
Karunasinghe, D.S.K.1
Liong, S.-Y.2
-
39
-
-
84949548202
-
Prediction of the chaotic time series based on chaotic simulated annealing and support vector machine
-
[39] H. Yuxia, Z. Hongtao, Prediction of the chaotic time series based on chaotic simulated annealing and support vector machine, in: Proceedings of the International Conference on Solid State Devices and Materials Science, Physics Procedia, vol. 25, 2012, pp. 506–512.
-
(2012)
Proceedings of the International Conference on Solid State Devices and Materials Science, Physics Procedia
, vol.25
, pp. 506-512
-
-
Yuxia, H.1
Hongtao, Z.2
-
40
-
-
84858339896
-
Chaotic time series prediction with employment of ant colony optimization
-
[40] Gromov, V.A., Shulga, A.N., Chaotic time series prediction with employment of ant colony optimization. Expert Syst. Appl. 39 (2012), 8474–8478.
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 8474-8478
-
-
Gromov, V.A.1
Shulga, A.N.2
-
41
-
-
61849164592
-
Fuzzy prediction architecture using recurrent neural networks
-
[41] Graves, D., Pedrycz, W., Fuzzy prediction architecture using recurrent neural networks. Neurocomputing 72 (2009), 1668–1678.
-
(2009)
Neurocomputing
, vol.72
, pp. 1668-1678
-
-
Graves, D.1
Pedrycz, W.2
-
42
-
-
84862785062
-
Deterministic non-periodic flows
-
[42] Lorenz, E., Deterministic non-periodic flows. J. Atmos. Sci. 20 (1963), 267–285.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 267-285
-
-
Lorenz, E.1
-
43
-
-
84897694851
-
Generalized dynamical fuzzy model for identification and prediction
-
[43] Saad Saoud, L., Rahmoune, F., Tourtchine, V., Baddari, K., Generalized dynamical fuzzy model for identification and prediction. J. Intell. Fuzzy Syst. 26:4 (2014), 1771–1785.
-
(2014)
J. Intell. Fuzzy Syst.
, vol.26
, Issue.4
, pp. 1771-1785
-
-
Saad Saoud, L.1
Rahmoune, F.2
Tourtchine, V.3
Baddari, K.4
-
44
-
-
0027601884
-
ANFIS: adaptive-network-based fuzzy inference system
-
[44] Jang, J.-S.R., ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23:3 (1993), 665–685.
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, Issue.3
, pp. 665-685
-
-
Jang, J.-S.R.1
-
45
-
-
84862806176
-
An evolving neuro-fuzzy technique for system state forecasting
-
[45] Wang, W., Li, D.Z., Vrbanek, J., An evolving neuro-fuzzy technique for system state forecasting. Neurocomputing 87 (2012), 111–119.
-
(2012)
Neurocomputing
, vol.87
, pp. 111-119
-
-
Wang, W.1
Li, D.Z.2
Vrbanek, J.3
-
46
-
-
80255133268
-
A new approach for time series prediction using ensembles of ANFIS models
-
[46] Melin, P., Soto, J., Castillo, O., Soria, J., A new approach for time series prediction using ensembles of ANFIS models. Expert Syst. Appl. 39 (2012), 3494–3506.
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 3494-3506
-
-
Melin, P.1
Soto, J.2
Castillo, O.3
Soria, J.4
-
47
-
-
33847321021
-
Fuzzy prediction of chaotic time series based on singular value decomposition
-
[47] Gu, H., Wang, H., Fuzzy prediction of chaotic time series based on singular value decomposition. Appl. Math. Comput. 185:2 (2007), 1171–1185.
-
(2007)
Appl. Math. Comput.
, vol.185
, Issue.2
, pp. 1171-1185
-
-
Gu, H.1
Wang, H.2
-
48
-
-
79955573824
-
Prediction of chaotic time series using computational intelligence
-
[48] Samanta, B., Prediction of chaotic time series using computational intelligence. Expert Syst. Appl. 38 (2011), 11406–11411.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 11406-11411
-
-
Samanta, B.1
-
49
-
-
84864482334
-
Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
-
[49] Qiao, J.F., Han, H.G., Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach. Automatica 48:8 (2012), 1729–1734.
-
(2012)
Automatica
, vol.48
, Issue.8
, pp. 1729-1734
-
-
Qiao, J.F.1
Han, H.G.2
-
50
-
-
83655163862
-
Extended and unscented Kalman filtering based feedforward neural networks for time series prediction
-
[50] Wu, X., Wang, Y., Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl. Math. Model. 36:3 (2012), 1123–1131.
-
(2012)
Appl. Math. Model.
, vol.36
, Issue.3
, pp. 1123-1131
-
-
Wu, X.1
Wang, Y.2
-
51
-
-
80052944192
-
Particle swarm optimization of T-S fuzzy model
-
B.-Y. Cao S. Chen G. Wang S. Guo Springer-Verlag Berlin Heidelberg
-
[51] Ma, M., Zhang, L.B., Sun, Y., Particle swarm optimization of T-S fuzzy model. Cao, B.-Y., Chen, S., Wang, G., Guo, S., (eds.) Quantitative Logic and Soft Computing, 2010, Springer-Verlag, Berlin Heidelberg, 447–452.
-
(2010)
Quantitative Logic and Soft Computing
, pp. 447-452
-
-
Ma, M.1
Zhang, L.B.2
Sun, Y.3
-
52
-
-
0742272554
-
An approach to online identification of Takagi-Sugeno fuzzy models
-
[52] Angelov, P.P., Filev, D.P., An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. 34:1 (2004), 484–498.
-
(2004)
IEEE Trans. Syst. Man Cybern.
, vol.34
, Issue.1
, pp. 484-498
-
-
Angelov, P.P.1
Filev, D.P.2
-
53
-
-
0031272838
-
Forecasting time series with genetic fuzzy predictor ensemble
-
[53] Kim, D., Kim, C., Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans. Fuzzy Syst. 5:4 (1997), 523–535.
-
(1997)
IEEE Trans. Fuzzy Syst.
, vol.5
, Issue.4
, pp. 523-535
-
-
Kim, D.1
Kim, C.2
-
54
-
-
84865002118
-
SoHyFIS-Yager: a self-organizing Yager based Hybrid neural fuzzy inference system
-
[54] Tung, S.W., Quek, C., Guan, C., SoHyFIS-Yager: a self-organizing Yager based Hybrid neural fuzzy inference system. Expert Syst. Appl. 39 (2012), 12759–12771.
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 12759-12771
-
-
Tung, S.W.1
Quek, C.2
Guan, C.3
|