-
1
-
-
84976871814
-
Classification of the asymptotic behavior of a stochastic SIR model
-
[1] Dieu, N.T., Dang, N.H., Du, N.H., Yin, G., Classification of the asymptotic behavior of a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 15:2 (2016), 1062–1084.
-
(2016)
SIAM J. Appl. Dyn. Syst.
, vol.15
, Issue.2
, pp. 1062-1084
-
-
Dieu, N.T.1
Dang, N.H.2
Du, N.H.3
Yin, G.4
-
2
-
-
70349162754
-
Global properties for virus dynamics model with Beddington–DeAngelis functional response
-
[2] Huang, G., Wanbiao, M., Yasuhiro, T., Global properties for virus dynamics model with Beddington–DeAngelis functional response. Appl. Math. Lett. 22:11 (2009), 1690–1693.
-
(2009)
Appl. Math. Lett.
, vol.22
, Issue.11
, pp. 1690-1693
-
-
Huang, G.1
Wanbiao, M.2
Yasuhiro, T.3
-
3
-
-
31244431623
-
Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models
-
[3] Korobeinikov, A., Wake, G.C., Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15:8 (2002), 955–960.
-
(2002)
Appl. Math. Lett.
, vol.15
, Issue.8
, pp. 955-960
-
-
Korobeinikov, A.1
Wake, G.C.2
-
4
-
-
77955420074
-
Permanence of a discrete SIRS epidemic model with time delays
-
[4] Sekiguchi, M., Permanence of a discrete SIRS epidemic model with time delays. Appl. Math. Lett. 23:10 (2010), 1280–1285.
-
(2010)
Appl. Math. Lett.
, vol.23
, Issue.10
, pp. 1280-1285
-
-
Sekiguchi, M.1
-
5
-
-
84936931405
-
Global exponential stability of a delay reduced SIR model for migrant workers’ home residence
-
[5] Zhang, H., Liu, X., Yang, M., Global exponential stability of a delay reduced SIR model for migrant workers’ home residence. Appl. Math. Lett. 50 (2015), 119–125.
-
(2015)
Appl. Math. Lett.
, vol.50
, pp. 119-125
-
-
Zhang, H.1
Liu, X.2
Yang, M.3
-
6
-
-
84923789423
-
Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence
-
[6] Liu, Q., Chen, Q., Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015), 140–153.
-
(2015)
Physica A
, vol.428
, pp. 140-153
-
-
Liu, Q.1
Chen, Q.2
-
7
-
-
79952335417
-
Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model
-
[7] Lahrouz, A., Omari, L., Kiouach, D., Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16:1 (2011), 59–76.
-
(2011)
Nonlinear Anal. Model. Control
, vol.16
, Issue.1
, pp. 59-76
-
-
Lahrouz, A.1
Omari, L.2
Kiouach, D.3
-
8
-
-
84925489992
-
Stochastic asymptotic stability of SIR model with variable diffusion rates
-
[8] Schurz, H., Tosun, K., Stochastic asymptotic stability of SIR model with variable diffusion rates. J. Dynam. Differential Equations 27 (2015), 69–82.
-
(2015)
J. Dynam. Differential Equations
, vol.27
, pp. 69-82
-
-
Schurz, H.1
Tosun, K.2
-
9
-
-
84908507682
-
Threshold behaviour of a stochastic SIR model
-
[9] Ji, C., Jiang, D., Threshold behaviour of a stochastic SIR model. Appl. Math. Model. 38:21–22 (2014), 5067–5079.
-
(2014)
Appl. Math. Model.
, vol.38
, Issue.21-22
, pp. 5067-5079
-
-
Ji, C.1
Jiang, D.2
-
10
-
-
84916882895
-
Threshold behavior in a stochastic SIS epidemic model with standard incidence
-
[10] Lin, Y., Jiang, D., Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dynam. Differential Equations 26:4 (2014), 1079–1094.
-
(2014)
J. Dynam. Differential Equations
, vol.26
, Issue.4
, pp. 1079-1094
-
-
Lin, Y.1
Jiang, D.2
-
11
-
-
84901917506
-
The threshold of a stochastic SIRS epidemic model with saturated incidence
-
[11] Zhao, Y., Jiang, D., The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34 (2014), 90–93.
-
(2014)
Appl. Math. Lett.
, vol.34
, pp. 90-93
-
-
Zhao, Y.1
Jiang, D.2
|