-
1
-
-
4644273929
-
Global stability of an SEI epidemic model with general contact rate
-
G. Li, Z. Jin, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23, pp. 997-1004, 2005.
-
(2005)
Chaos Solitons Fractals
, vol.23
, pp. 997-1004
-
-
Li, G.1
Jin, Z.2
-
2
-
-
78651276054
-
Epidemiological models and Lyapunov function
-
A. Fall, A. Iggidr, G. Sallet, J.J. Tewa, Epidemiological models and Lyapunov function, Math. Model. Nat. Phenom., 2, pp. 55-73, 2007.
-
(2007)
Math. Model. Nat. Phenom
, vol.2
, pp. 55-73
-
-
Fall, A.1
Iggidr, A.2
Sallet, G.3
Tewa, J.J.4
-
3
-
-
67349249710
-
Global stability of a stage structured epidemic model with a nonlineare incidence
-
M.L. Cai, X.Z. Li, M. Chosh, Global stability of a stage structured epidemic model with a nonlineare incidence, Appl. Math. Comput., 214, pp. 73-82, 2009.
-
(2009)
Appl. Math. Comput
, vol.214
, pp. 73-82
-
-
Cai, M.L.1
Li, X.Z.2
Chosh, M.3
-
4
-
-
61449181521
-
Analysis of an SEIV epidemic model with a nonlinear incidence rate
-
M.L. Cai, X.Z. Li, Analysis of an SEIV epidemic model with a nonlinear incidence rate, Appl. Math. Modelling, 33, pp. 2919-2926, 2009.
-
(2009)
Appl. Math. Modelling
, vol.33
, pp. 2919-2926
-
-
Cai, M.L.1
Li, X.Z.2
-
7
-
-
0017228276
-
Qualitative analyses of communicable disease models
-
H.W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28, pp. 335-356, 1976.
-
(1976)
Math. Biosci
, vol.28
, pp. 335-356
-
-
Hethcote, H.W.1
-
8
-
-
34547134261
-
Global analysis of an epidemic model with nonmonotone incidence rate
-
D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208, pp. 419-429, 2007.
-
(2007)
Math. Biosci
, vol.208
, pp. 419-429
-
-
Xiao, D.1
Ruan, S.2
-
9
-
-
0030544879
-
A geometric approach to global-stability problems
-
M.Y. Li, J.S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 pp. 1070-1083, 1996.
-
(1996)
SIAM J. Math. Anal
, vol.27
, pp. 1070-1083
-
-
Li, M.Y.1
Muldowney, J.S.2
-
10
-
-
0028817626
-
Global stability for the SEIR model in epidemiology
-
M.Y. Li, J.S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 pp. 155-164, 1995.
-
(1995)
Math. Biosci
, vol.125
, pp. 155-164
-
-
Li, M.Y.1
Muldowney, J.S.2
-
11
-
-
33745222283
-
Global stability of an SEIR epidemic model with constant immigration
-
G. Li, W. Wang, Z. Jin, Global stability of an SEIR epidemic model with constant immigration, Chaos Solitons Fractals, 30, pp. 1012-1019, 2006.
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 1012-1019
-
-
Li, G.1
Wang, W.2
Jin, Z.3
-
12
-
-
33846820429
-
Global stability for an special SEIR epidemic model with nonlinear incidence rates
-
C. Sun, Y. Lin, S. Tang, Global stability for an special SEIR epidemic model with nonlinear incidence rates, Chaos Solitons Fractals, 33, pp. 290-297, 2007.
-
(2007)
Chaos Solitons Fractals
, vol.33
, pp. 290-297
-
-
Sun, C.1
Lin, Y.2
Tang, S.3
-
13
-
-
67349124783
-
Analysis of an HIV/AIDS treatmaent model with a nonlinear incidence
-
L. Cai, J. Wu, Analysis of an HIV/AIDS treatmaent model with a nonlinear incidence, Chaos Solitons Fractals, 41, pp. 175-182, 2009.
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 175-182
-
-
Cai, L.1
Wu, J.2
-
14
-
-
0031997110
-
Stability of epidemic model with time delay influenced by stochastic perturbations
-
E. Beretta, V. Kolmanovskii, L. Shaikhet, Stability of epidemic model with time delay influenced by stochastic perturbations, Math. Comput. Simul., 45, pp. 269-277, 1998.
-
(1998)
Math. Comput. Simul
, vol.45
, pp. 269-277
-
-
Beretta, E.1
Kolmanovskii, V.2
Shaikhet, L.3
-
15
-
-
22144467632
-
Cancer self remission and tumor stability - a stochastic approach
-
R.R. Sarkar, S. Banerjee, Cancer self remission and tumor stability - a stochastic approach, Math. Biosci., 196(1), pp. 65-81, 2005.
-
(2005)
Math. Biosci
, vol.196
, Issue.1
, pp. 65-81
-
-
Sarkar, R.R.1
Banerjee, S.2
-
16
-
-
0018041874
-
A generalization of the Kermack-Mckendrick deterministic epidemic model
-
V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci, 42, pp. 41-61, 1978.
-
(1978)
Math. Biosci
, vol.42
, pp. 41-61
-
-
Capasso, V.1
Serio, G.2
-
17
-
-
33746594608
-
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission
-
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68, pp. 615-626, 2006.
-
(2006)
Bull. Math. Biol
, vol.68
, pp. 615-626
-
-
Korobeinikov, A.1
-
18
-
-
25144476559
-
Nonlinear incidence and stability of infectious disease models
-
A. Korobeinikov, P.K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22, pp. 113-128, 2005.
-
(2005)
Math. Med. Biol
, vol.22
, pp. 113-128
-
-
Korobeinikov, A.1
Maini, P.K.2
-
19
-
-
31244431623
-
Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models
-
A. Korobeinikov, G.C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett. 15(8), pp. 955-961, 2002.
-
(2002)
Appl. Math. Lett
, vol.15
, Issue.8
, pp. 955-961
-
-
Korobeinikov, A.1
Wake, G.C.2
-
20
-
-
3042703290
-
Lyapunov functions and global properties for SEIR and SEIS epidemic models
-
A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol. 21(2), pp. 75-83, 2004.
-
(2004)
Math. Med. Biol
, vol.21
, Issue.2
, pp. 75-83
-
-
Korobeinikov, A.1
-
21
-
-
67349156272
-
Multi-compartment models
-
A. Iggidr, J. Mbang, G. Sallet, J.J. Tewa, Multi-compartment models, Discrete Contin. Dyn. Syst., Suppl., pp. 506-519, 2007.
-
(2007)
Discrete Contin. Dyn. Syst., Suppl
, pp. 506-519
-
-
Iggidr, A.1
Mbang, J.2
Sallet, G.3
Tewa, J.J.4
-
22
-
-
77049091788
-
Lyapunov functions for SIR and SIRS epidemic models
-
S.M. O'Regan, T.C. Kelly, A. Korbeinikov, M.J.A. O'Callaghan, A.V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models, Appl. Math. Lett., 23, pp. 446-448, 2010.
-
(2010)
Appl. Math. Lett
, vol.23
, pp. 446-448
-
-
O'Regan, S.M.1
Kelly, T.C.2
Korbeinikov, A.3
O'Callaghan, M.J.A.4
Pokrovskii, A.V.5
-
23
-
-
0033586169
-
Stochastic versions of the LaSalle theorem
-
X. Mao, Stochastic versions of the LaSalle theorem, J. Differ. Equations, 153, pp. 175-195, 1999.
-
(1999)
J. Differ. Equations
, vol.153
, pp. 175-195
-
-
Mao, X.1
-
24
-
-
19944381861
-
Stability of a stochastic SIR system
-
E. Tornatore, S.M. Buccellato, P. Vetro, Stability of a stochastic SIR system, Physica A, 354, pp. 111-126, 2005.
-
(2005)
Physica A
, vol.354
, pp. 111-126
-
-
Tornatore, E.1
Buccellato, S.M.2
Vetro, P.3
-
25
-
-
67649440965
-
Stability of SIRS system with random perturbations
-
Q. Lu, Stability of SIRS system with random perturbations, Physica A, 388, pp. 3677-3686, 2009.
-
(2009)
Physica A
, vol.388
, pp. 3677-3686
-
-
Lu, Q.1
-
26
-
-
0036845274
-
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
-
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, pp. 29-48, 2002.
-
(2002)
Math. Biosci
, vol.180
, pp. 29-48
-
-
Van den Driessche, P.1
Watmough, J.2
-
27
-
-
0003498628
-
-
Kluwer Academic, Dordrecht
-
V.N. Afanas'ev, V.B. Kolmanowskii, V.R. Nosov, Mathematical Theory of Control Systems Design, Kluwer Academic, Dordrecht, 1996.
-
(1996)
Mathematical Theory of Control Systems Design
-
-
Afanas'ev, V.N.1
Kolmanowskii, V.B.2
Nosov, V.R.3
-
29
-
-
0039337197
-
A strong law of large numbers for local martingales
-
R. Liptser, A strong law of large numbers for local martingales, Stochastics, 3, pp. 217-228, 1980.
-
(1980)
Stochastics
, vol.3
, pp. 217-228
-
-
Liptser, R.1
|