-
1
-
-
17744385524
-
A vaccination model for transmission dynamics of influenza
-
M. E. ALEXANDER, C. BOWMAN, S. M. MOGHADAS, R. SUMMERS, A. B. GUMEL, and B. M. SAHAI, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3(2004), pp. 503-524, http://dx.doi.org/10.1137/030600370.
-
(2004)
SIAM J. Appl. Dyn. Syst.
, vol.3
, pp. 503-524
-
-
Alexander, M.E.1
Bowman, C.2
Moghadas, S.M.3
Summers, R.4
Gumel, A.B.5
Sahai, B.M.6
-
2
-
-
84871265534
-
An SIR epidemic model on a population with random network and household structure, and several types of individuals
-
F. BALL and D. SIRL, An SIR epidemic model on a population with random network and household structure, and several types of individuals, Adv. Appl. Probab., 44(2012), pp. 63-86.
-
(2012)
Adv. Appl. Probab.
, vol.44
, pp. 63-86
-
-
Ball, F.1
Sirl, D.2
-
3
-
-
33748490694
-
Portmanteau theorem for un bounded measures
-
M. BARCZY and G. PAP, Portmanteau theorem for un bounded measures, Statist. Probab. Lett., 76(2006), pp. 1831-1835.
-
(2006)
Statist. Probab. Lett.
, vol.76
, pp. 1831-1835
-
-
Barczy, M.1
Pap, G.2
-
5
-
-
84943366139
-
A stochastic SIRS epidemic model with infectious force under intervention strategies
-
Y. CAI, Y. KANG, M. BANERJEE, and W. WANG, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differential Equations, 259(2015), pp. 7463-7502.
-
(2015)
J. Differential Equations
, vol.259
, pp. 7463-7502
-
-
Cai, Y.1
Kang, Y.2
Banerjee, M.3
Wang, W.4
-
7
-
-
21244433219
-
Practical drift conditions for subgeometric rates of convergence
-
R. DOUC, G. FORT, E. MOULINES, and PH. SOULIER, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab., 14(2004), pp. 1353-1377.
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 1353-1377
-
-
Douc, R.1
Fort, G.2
Moulines, E.3
Soulier, Ph.4
-
8
-
-
84963541457
-
Conditions for permanence and ergodicity of certain stochastic predator-prey models
-
N. H. DU, D. H. NGUYEN, and G. YIN, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53(2016), pp. 187-202.
-
(2016)
J. Appl. Probab.
, vol.53
, pp. 187-202
-
-
Du, N.H.1
Nguyen, D.H.2
Yin, G.3
-
9
-
-
67649635240
-
From damage models to SIR epidemics and cascading failures
-
M. GATHY and C. LEFEVRE, From damage models to SIR epidemics and cascading failures, Adv. in Appl. Probab., 41(2009), pp. 247-269.
-
(2009)
Adv. in Appl. Probab.
, vol.41
, pp. 247-269
-
-
Gathy, M.1
Lefevre, C.2
-
10
-
-
79960370338
-
A stochastic differential equation SIS epidemic model
-
A. GRAY, D. GREENHALGH, L. HU, X. MAO, and J. PAN, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71(2011), pp. 876-902, http://dx.doi.org/10.1137/10081856X.
-
(2011)
SIAM J. Appl. Math.
, vol.71
, pp. 876-902
-
-
Gray, A.1
Greenhalgh, D.2
Hu, L.3
Mao, X.4
Pan, J.5
-
12
-
-
0036117479
-
Polynomial convergence rates of Markov chains
-
S. F. JARNER and G. O. ROBERTS, Polynomial convergence rates of Markov chains, Ann. Appl. Probab., 12(2002), pp. 224-247.
-
(2002)
Ann. Appl. Probab.
, vol.12
, pp. 224-247
-
-
Jarner, S.F.1
Roberts, G.O.2
-
13
-
-
84864974814
-
The behavior of an SIR epidemic model with stochastic perturbation
-
C. Y. JI, D. Q. JIANG, and N. Z. SHI, The behavior of an SIR epidemic model with stochastic perturbation, Stoch. Anal. Appl., 30(2012), pp. 755-773.
-
(2012)
Stoch. Anal. Appl.
, vol.30
, pp. 755-773
-
-
Ji, C.Y.1
Jiang, D.Q.2
Shi, N.Z.3
-
14
-
-
79955469778
-
Asymptotic behavior of global positive solution to a stochastic SIR model
-
D. Q. JIANG, J. J. YU, C. Y. JI, and N. Z. SHI, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Model., 54(2011), pp. 221-232.
-
(2011)
Math. Comput. Model.
, vol.54
, pp. 221-232
-
-
Jiang, D.Q.1
Yu, J.J.2
Ji, C.Y.3
Shi, N.Z.4
-
15
-
-
0000998185
-
Contributions to the mathematical theory of epidemics-I
-
W. O. KERMACK and A. G. MCKENDRICK, Contributions to the mathematical theory of epidemics-I, Proc. R. Soc. Lond. Ser. A, 115(1927), pp. 700-721.
-
(1927)
Proc. R. Soc. Lond. Ser. A
, vol.115
, pp. 700-721
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
16
-
-
0002379564
-
Contributions to the mathematical theory of epidemics-II
-
W. O. KERMACK and A. G. MCKENDRICK, Contributions to the mathematical theory of epidemics-II, Proc. Roy. Soc. Lond. Ser. A, 138(1932), pp. 55-83.
-
(1932)
Proc. Roy. Soc. Lond. Ser. A
, vol.138
, pp. 55-83
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
17
-
-
0001633088
-
Recurrence and invariant measures for degenerate diffusions
-
W. KLIEMANN, Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15(1987), pp. 690-707.
-
(1987)
Ann. Probab.
, vol.15
, pp. 690-707
-
-
Kliemann, W.1
-
18
-
-
84891392235
-
Epidemic spread and variation of peak times in connected regions due to travel-related infections-dynamics of an antigravity-type delay differential model
-
D. H. KNIPL, G. RÖST, and J. WU, Epidemic spread and variation of peak times in connected regions due to travel-related infections-dynamics of an antigravity-type delay differential model, SIAM J. Appl. Dyn. Syst., 12(2013), pp. 1722-1762, http://dx.doi.org/10.1137/130914127.
-
(2013)
SIAM J. Appl. Dyn. Syst.
, vol.12
, pp. 1722-1762
-
-
Knipl, D.H.1
Röst, G.2
Wu, J.3
-
19
-
-
84919629581
-
A predator-prey SIR type dynamics on large complete graphs with three phase transitions
-
I. KORTCHEMSKI, A predator-prey SIR type dynamics on large complete graphs with three phase transitions, Stoch. Process. Appl., 125(2015), pp. 886-917.
-
(2015)
Stoch. Process. Appl.
, vol.125
, pp. 886-917
-
-
Kortchemski, I.1
-
20
-
-
84898066508
-
Long-time behavior of a stochastic SIR model
-
Y. LIN, D. JIANG, and P. XIA, Long-time behavior of a stochastic SIR model, Appl. Math. Comput., 236(2014), pp. 1-9.
-
(2014)
Appl. Math. Comput.
, vol.236
, pp. 1-9
-
-
Lin, Y.1
Jiang, D.2
Xia, P.3
-
23
-
-
0000684659
-
Stability of Markovian processes II: Continuous-time processes and sampled chains
-
S. P. MEYN and R. L. TWEEDIE, Stability of Markovian processes II: Continuous-time processes and sampled chains, Adv. in Appl. Probab., 25(1993), pp. 487-517.
-
(1993)
Adv. in Appl. Probab.
, vol.25
, pp. 487-517
-
-
Meyn, S.P.1
Tweedie, R.L.2
-
25
-
-
0003499179
-
-
Cambridge Tracts in Math. 83, Cambridge University Press, Cambridge, UK
-
E. NUMMELIN, General Irreducible Markov Chains and Non-negative Operations, Cambridge Tracts in Math. 83, Cambridge University Press, Cambridge, UK, 1984.
-
(1984)
General Irreducible Markov Chains and Non-negative Operations
-
-
Nummelin, E.1
-
26
-
-
84925335151
-
Dynamic control of modern, network-based epidemic models
-
F. SÉLLEY, Á. BESENYEI, I. Z. KISS, and P. L. SIMON, Dynamic control of modern, network-based epidemic models, SIAM J. Appl. Dyn. Syst., 14(2015), pp. 168-187, http://dx.doi.org/10.1137/130947039.
-
(2015)
SIAM J. Appl. Dyn. Syst.
, vol.14
, pp. 168-187
-
-
Sélley, F.1
Besenyei, Á.2
Kiss, I.Z.3
Simon, P.L.4
-
27
-
-
84976883064
-
Asymptotic methods in the the ory of stochastic differential equations
-
American Mathematical Society, Providence, RI
-
A. V. SKOROKHOD, Asymptotic Methods in the The ory of Stochastic Differential Equations, Translated from the Russian by H. H. McFaden, Transl. Math. Monogr. 78, American Mathematical Society, Providence, RI, 1989.
-
(1989)
Translated from the Russian by H. H. McFaden, Transl. Math. Monogr.
, vol.78
-
-
Skorokhod, A.V.1
-
28
-
-
0001153782
-
Subgeometric rates of convergence of f-ergodic Markov chains
-
P. TUOMINEN and R. L. TWEEDIE, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. in Appl. Probab., 26(1994), pp. 775-798.
-
(1994)
Adv. in Appl. Probab.
, vol.26
, pp. 775-798
-
-
Tuominen, P.1
Tweedie, R.L.2
-
29
-
-
84871394066
-
Basic reproduction numbers for reaction-diffusion epidemic models
-
W. WANG and X.-Q. ZHAO, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11(2012), pp. 1652-1673, http://dx.doi.org/10.1137/120872942.
-
(2012)
SIAM J. Appl. Dyn. Syst.
, vol.11
, pp. 1652-1673
-
-
Wang, W.1
Zhao, X.-Q.2
-
30
-
-
84904883586
-
Survival and stationary distribution of a SIR epidemic model with stochastic perturbations
-
Y. ZHOU, W. ZHANG, and S. YUAN, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244(2014), pp. 118-131.
-
(2014)
Appl. Math. Comput.
, vol.244
, pp. 118-131
-
-
Zhou, Y.1
Zhang, W.2
Yuan, S.3
|