메뉴 건너뛰기




Volumn 99, Issue 7-8, 2017, Pages 1117-1128

Quantitative structure–activity relationship models for bee toxicity

Author keywords

bee toxicity; CORAL software; descriptor selection; Monte Carlo method; QSAR

Indexed keywords

CALIBRATION; MONTE CARLO METHODS; TOXICITY;

EID: 84991481593     PISSN: 02772248     EISSN: 10290486     Source Type: Journal    
DOI: 10.1080/02772248.2016.1242006     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 84929494122 scopus 로고    scopus 로고
    • Predicting the Cytotoxicity of Ionic Liquids Using QSAR Model Based on SMILES Optimal Descriptors
    • Ghaedi, A., 2015. “Predicting the Cytotoxicity of Ionic Liquids Using QSAR Model Based on SMILES Optimal Descriptors. ” Journal of Molecular Liquids 208 (8):269–279. doi:10.1016/j.molliq.2015.04.049.
    • (2015) Journal of Molecular Liquids , vol.208 , Issue.8 , pp. 269-279
    • Ghaedi, A.1
  • 2
    • 84963568220 scopus 로고    scopus 로고
    • Monte Carlo Method for Predicting of Cardiac Toxicity: hERG Blocker Compounds
    • Gobbi, M., M., Beeg, M.A., Toropova, A.A., Toropov, and M., Salmona. 2016. “Monte Carlo Method for Predicting of Cardiac Toxicity:hERG Blocker Compounds.” Toxicology Letters 250:42–46. http://dx.doi.org/10.1016/j.toxlet.2016.04.010
    • (2016) Toxicology Letters , vol.250 , pp. 42-46
    • Gobbi, M.1    Beeg, M.2    Toropova, M.A.3    Toropov, A.A.4    Salmona, M.5
  • 3
    • 84960372083 scopus 로고    scopus 로고
    • Simplified Molecular Input Line Entry System-Based Descriptors in QSAR Modeling for HIV-Protease Inhibitors
    • Islam, M.A., and T.S., Pillay. 2016. “Simplified Molecular Input Line Entry System-Based Descriptors in QSAR Modeling for HIV-Protease Inhibitors.” Chemometrics and Intelligent Laboratory System 153:67–74. doi:10.1016/j.chemolab.2016.02.008.
    • (2016) Chemometrics and Intelligent Laboratory System , vol.153 , pp. 67-74
    • Islam, M.A.1    Pillay, T.S.2
  • 4
    • 84875243520 scopus 로고    scopus 로고
    • First Report on Predictive Chemometric Modeling, 3D-Toxicophore Mapping And in Silico Screening of in Vitro Basal Cytotoxicity of Diverse Organic Chemicals
    • Kar, S., and K., Roy. 2013. “First Report on Predictive Chemometric Modeling, 3D-Toxicophore Mapping And in Silico Screening of in Vitro Basal Cytotoxicity of Diverse Organic Chemicals.” Toxicology in Vitro 27 (2):597–608. doi:10.1016/j.tiv.2012.10.015.
    • (2013) Toxicology in Vitro , vol.27 , Issue.2 , pp. 597-608
    • Kar, S.1    Roy, K.2
  • 5
    • 33644758439 scopus 로고    scopus 로고
    • Non-Stochastic and Stochastic Linear Indices of the Molecular Pseudograph's Atom-Adjacency Matrix: A Novel Approach for Computational In Silico Screening and "Rational" Selection of New Lead Antibacterial Agents
    • Marrero-Ponce, Y., R.M., Marrero, F., Torrens, Y., Martinez, M.G., Bernal, V.R., Zaldivar, E.A., Castro, and R.G., Abalo. 2006. “Non-Stochastic and Stochastic Linear Indices of the Molecular Pseudograph's Atom-Adjacency Matrix:A Novel Approach for Computational In Silico Screening and "Rational" Selection of New Lead Antibacterial Agents.” Journal of Molecular Modelling 12 (3):255–271. doi:10.1007/s00894-005-0024-8.
    • (2006) Journal of Molecular Modelling , vol.12 , Issue.3 , pp. 255-271
    • Marrero-Ponce, Y.1    Marrero, R.M.2    Torrens, F.3    Martinez, Y.4    Bernal, M.G.5    Zaldivar, V.R.6    Castro, E.A.7    Abalo, R.G.8
  • 7
    • 33846861802 scopus 로고    scopus 로고
    • SMILES as an Alternative to the Graph in QSAR Modelling of Bee Toxicity
    • Toropov, A.A., and E., Benfenati. 2007. “SMILES as an Alternative to the Graph in QSAR Modelling of Bee Toxicity.” Computational Biology and Chemistry 31:57–60. doi:10.1016/j.compbiolchem.2007.01.003.
    • (2007) Computational Biology and Chemistry , vol.31 , pp. 57-60
    • Toropov, A.A.1    Benfenati, E.2
  • 8
    • 43049147993 scopus 로고    scopus 로고
    • Additive SMILES-Based Optimal Descriptors in QSAR Modelling Bee Toxicity: Using Rare SMILES Attributes to Define the Applicability Domain
    • Toropov, A.A., and E., Benfenati. 2008. “Additive SMILES-Based Optimal Descriptors in QSAR Modelling Bee Toxicity:Using Rare SMILES Attributes to Define the Applicability Domain.” Bioorganic & Medicinal Chemistry 16:4801–4809. doi:10.1016/j.bmc.2008.03.048.
    • (2008) Bioorganic & Medicinal Chemistry , vol.16 , pp. 4801-4809
    • Toropov, A.A.1    Benfenati, E.2
  • 9
    • 44449147785 scopus 로고    scopus 로고
    • QSAR Modeling of Acute Toxicity by Balance of Correlations
    • Toropov, A.A., B.F., Rasulev, and J., Leszczynski. 2008. “QSAR Modeling of Acute Toxicity by Balance of Correlations.” Bioorganic & Medicinal Chemistry 16 (11):5999–6008. doi:10.1016/j.bmc.2008.04.055.
    • (2008) Bioorganic & Medicinal Chemistry , vol.16 , Issue.11 , pp. 5999-6008
    • Toropov, A.A.1    Rasulev, B.F.2    Leszczynski, J.3
  • 10
    • 68349135029 scopus 로고    scopus 로고
    • QSAR Modelling of Carcinogenicity by Balance of Correlations
    • Toropov, A.A., A.P., Toropova, E., Benfenati, and A., Manganaro. 2009. “QSAR Modelling of Carcinogenicity by Balance of Correlations.” Molecular Diversity 13 (3):367–373. doi:10.1007/s11030-009-9113-4.
    • (2009) Molecular Diversity , vol.13 , Issue.3 , pp. 367-373
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Manganaro, A.4
  • 11
    • 77149132511 scopus 로고    scopus 로고
    • QSAR-Modeling of Toxicity of Organometallic Compounds By Means of the Balance of Correlations for InChI-Based Optimal Descriptors
    • Toropov, A.A., A.P., Toropova, and E., Benfenati. 2010. “QSAR-Modeling of Toxicity of Organometallic Compounds By Means of the Balance of Correlations for InChI-Based Optimal Descriptors.” Molecular Diversity 14 (1):183–192. doi:10.1007/s11030-009-9156-6.
    • (2010) Molecular Diversity , vol.14 , Issue.1 , pp. 183-192
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3
  • 12
    • 79959742537 scopus 로고    scopus 로고
    • CORAL: Quantitative Structure–Activity Relationship Models for Estimating Toxicity of Organic Compounds in Rats
    • Toropova, A.P., A.A., Toropov, E., Benfenati, G., Gini, D., Leszczynska, and J., Leszczynski. 2011. “CORAL:Quantitative Structure–Activity Relationship Models for Estimating Toxicity of Organic Compounds in Rats.” Journal of Computational Chemistry 32:2727–2733. doi:10.1002/jcc.21848.
    • (2011) Journal of Computational Chemistry , vol.32 , pp. 2727-2733
    • Toropova, A.P.1    Toropov, A.A.2    Benfenati, E.3    Gini, G.4    Leszczynska, D.5    Leszczynski, J.6
  • 17
    • 84872580195 scopus 로고    scopus 로고
    • SMILES-Based QSAR Model for Arylpiperazines as High-Affinity 5-HT1A Receptor Ligands Using CORAL
    • Veselinović, A.M., J.B., Milosavljević, A.A., Toropov, and G.M., Nikolić. 2013. “SMILES-Based QSAR Model for Arylpiperazines as High-Affinity 5-HT1A Receptor Ligands Using CORAL” European Journal of Pharmaceutic Sciences 48 (3):532–541. doi:10.1016/j.ejps.2012.12.021.
    • (2013) European Journal of Pharmaceutic Sciences , vol.48 , Issue.3 , pp. 532-541
    • Veselinović, A.M.1    Milosavljević, J.B.2    Toropov, A.A.3    Nikolić, G.M.4
  • 19
    • 0023965741 scopus 로고
    • SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules
    • Weininger, D., 1988. “SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules.” Journal of Chemical Information and Computer Sciences 28 (1):31–36. doi:10.1021/ci00057a005.
    • (1988) Journal of Chemical Information and Computer Sciences , vol.28 , Issue.1 , pp. 31-36
    • Weininger, D.1
  • 21
    • 0000144425 scopus 로고
    • Smiles. 3. Depict. Graphical Depiction of Chemical Structures
    • Weininger, D., 1990. “Smiles. 3. Depict. Graphical Depiction of Chemical Structures.” Journal of Chemical Information and Computer Sciences 30 (3):237–243. doi:10.1021/ci00067a005.
    • (1990) Journal of Chemical Information and Computer Sciences , vol.30 , Issue.3 , pp. 237-243
    • Weininger, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.