메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages 5-19

Forecasting with Big Data: A Review

Author keywords

Big data; Forecasting; Statistics; Technique

Indexed keywords

BAYESIAN NETWORKS; BIG DATA; POPULATION STATISTICS; SIGNAL TO NOISE RATIO;

EID: 84991460509     PISSN: 21985804     EISSN: 21985812     Source Type: Journal    
DOI: 10.1007/s40745-015-0029-9     Document Type: Review
Times cited : (114)

References (96)
  • 2
    • 78650966409 scopus 로고    scopus 로고
    • New Eurocoin: tracking economic growth in real time
    • Altissimo F, Cristadoro R, Forni M, Lippi M, Veronese G (2010) New Eurocoin: tracking economic growth in real time. Rev Econ Stat 92(4):1024–1034 DOI: 10.1162/REST_a_00045
    • (2010) Rev Econ Stat , vol.92 , Issue.4 , pp. 1024-1034
    • Altissimo, F.1    Cristadoro, R.2    Forni, M.3    Lippi, M.4    Veronese, G.5
  • 3
    • 84896033097 scopus 로고    scopus 로고
    • Accidental, open and everywhere: emerging data sources for the understanding of cities
    • Arribas-Bel D (2014) Accidental, open and everywhere: emerging data sources for the understanding of cities. Appl Geogr 49:45–53 DOI: 10.1016/j.apgeog.2013.09.012
    • (2014) Appl Geogr , vol.49 , pp. 45-53
    • Arribas-Bel, D.1
  • 4
    • 85094200516 scopus 로고    scopus 로고
    • Accessed 16 May 2013
    • Bacon T (2013) Big bang? When ‘Big Data’ gets too Big. http://www.eyefortravel.com/mobile-and-technology/big-bang-when-%E2%80%98big-data%E2%80%99-gets-too-big. Accessed 16 May 2013
    • (2013) Big Bang? When ‘Big Data’ Gets Too Big
    • Bacon, T.1
  • 6
    • 74349112824 scopus 로고    scopus 로고
    • Large bayesian vector autoregressions
    • Bańbura M, Giannone D, Reichlin L (2010) Large bayesian vector autoregressions. J Appl Econom 25(1):71–92 DOI: 10.1002/jae.1137
    • (2010) J Appl Econom , vol.25 , Issue.1 , pp. 71-92
    • Bańbura, M.1    Giannone, D.2    Reichlin, L.3
  • 7
    • 84892845697 scopus 로고    scopus 로고
    • Maximum likelihood sstimation of factor models on datasets with arbitrary pattern of missing data
    • Bańbura M, Modugno M (2014) Maximum likelihood sstimation of factor models on datasets with arbitrary pattern of missing data. J Appl Econom 29(1):133–160 DOI: 10.1002/jae.2306
    • (2014) J Appl Econom , vol.29 , Issue.1 , pp. 133-160
    • Bańbura, M.1    Modugno, M.2
  • 8
    • 84901838181 scopus 로고    scopus 로고
    • Forecasting with factor-augmented error correction models
    • in Press
    • Banerjee A, Marcellino M, Masten I (2013) Forecasting with factor-augmented error correction models. Int J Forecast (in Press)
    • (2013) Int J Forecast
    • Banerjee, A.1    Marcellino, M.2    Masten, I.3
  • 9
    • 15544377383 scopus 로고    scopus 로고
    • Measuring the effects of monetary policy: a factor-augmented vector autoregressive approach
    • Bernanke B, Boivin J, Eliasz PS (2005) Measuring the effects of monetary policy: a factor-augmented vector autoregressive approach. Quart J Econ 120(1):387–422
    • (2005) Quart J Econ , vol.120 , Issue.1 , pp. 387-422
    • Bernanke, B.1    Boivin, J.2    Eliasz, P.S.3
  • 14
    • 84861696231 scopus 로고    scopus 로고
    • International production and dissemination information: results, methodological issues, and statistical perspectives
    • Bounie D (2012) International production and dissemination information: results, methodological issues, and statistical perspectives. Int J Commun 6:1001–1021
    • (2012) Int J Commun , vol.6 , pp. 1001-1021
    • Bounie, D.1
  • 15
    • 84861974217 scopus 로고    scopus 로고
    • Critical questions for big data
    • Boyd D, Crawford K (2012) Critical questions for big data. Inf Commun Soc 15(5):662–679 DOI: 10.1080/1369118X.2012.678878
    • (2012) Inf Commun Soc , vol.15 , Issue.5 , pp. 662-679
    • Boyd, D.1    Crawford, K.2
  • 16
    • 83455179027 scopus 로고    scopus 로고
    • Are you ready for the era of ‘big data’?
    • Guzzo RA, (ed), McKinsey & Company, New York
    • Brown B, Chui M, Manyika J (2011) Are you ready for the era of ‘big data’? In: Guzzo RA (ed) McKinsey quarterly. McKinsey & Company, New York
    • (2011) McKinsey quarterly
    • Brown, B.1    Chui, M.2    Manyika, J.3
  • 17
    • 1442280684 scopus 로고    scopus 로고
    • Spanish diffusion indexes
    • Camacho M, Sancho I (2003) Spanish diffusion indexes. Span Econ Rev 5(3):173–203 DOI: 10.1007/s10108-003-0062-2
    • (2003) Span Econ Rev , vol.5 , Issue.3 , pp. 173-203
    • Camacho, M.1    Sancho, I.2
  • 19
    • 84860882664 scopus 로고    scopus 로고
    • Forecasting government bond yields with large Bayesian vector autoregressions
    • Carriero A, Kapetanios G, Marcellino M (2012b) Forecasting government bond yields with large Bayesian vector autoregressions. J Bank Financ 36(7):2026–2047 DOI: 10.1016/j.jbankfin.2012.03.008
    • (2012) J Bank Financ , vol.36 , Issue.7 , pp. 2026-2047
    • Carriero, A.1    Kapetanios, G.2    Marcellino, M.3
  • 20
    • 79960442479 scopus 로고    scopus 로고
    • Forecasting large datasets with Bayesian reduced rank multivariate models
    • Carriero A, Kapetanios G, Marcellino M (2011) Forecasting large datasets with Bayesian reduced rank multivariate models. J Appl Econom 26(5):735–761 DOI: 10.1002/jae.1150
    • (2011) J Appl Econom , vol.26 , Issue.5 , pp. 735-761
    • Carriero, A.1    Kapetanios, G.2    Marcellino, M.3
  • 21
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the resent with google trends
    • Choi H, Varian H (2012) Predicting the resent with google trends. Econ Rec 88(s1):2–9 DOI: 10.1111/j.1475-4932.2012.00809.x
    • (2012) Econ Rec , vol.88 , Issue.s1 , pp. 2-9
    • Choi, H.1    Varian, H.2
  • 22
    • 80051803315 scopus 로고    scopus 로고
    • Data, data everywhere
    • Accessed 17 Jul 2012
    • Cukier K (2010) Data, data everywhere. The economist. http://www.economist.com/node/15557443. Accessed 17 Jul 2012
    • (2010) The Economist.
    • Cukier, K.1
  • 23
    • 53649093540 scopus 로고    scopus 로고
    • Forecasting using a large number of predictors: is Bayesian shrinkage a valid alternative to principal components?
    • De Mol C, Giannone D, Reichlin L (2008) Forecasting using a large number of predictors: is Bayesian shrinkage a valid alternative to principal components? J Econom 146(2):318–328 DOI: 10.1016/j.jeconom.2008.08.011
    • (2008) J Econom , vol.146 , Issue.2 , pp. 318-328
    • De Mol, C.1    Giannone, D.2    Reichlin, L.3
  • 24
    • 84926128091 scopus 로고    scopus 로고
    • ’Big Data’ Dynamic factor models for macroeconomic measurement and forecasting
    • Dewatripont M, Hansen LP, Turnovsky S, (eds), Cambridge University Press, Cambridge
    • Diebold FX (2003) ’Big Data’ Dynamic factor models for macroeconomic measurement and forecasting. In: Dewatripont M, Hansen LP, Turnovsky S (eds) Advances in economics and econometrics, eighth world congress of the econometric society. Cambridge University Press, Cambridge, pp 115–122
    • (2003) Advances in economics and econometrics, eighth world congress of the econometric society , pp. 115-122
    • Diebold, F.X.1
  • 25
    • 84871575482 scopus 로고    scopus 로고
    • A quasi-maximum likelihood approach for large, approximate dynamic factor models
    • Doz C, Giannone D, Reichlin L (2012) A quasi-maximum likelihood approach for large, approximate dynamic factor models. Rev Econ Stat 99(4):1014–1024 DOI: 10.1162/REST_a_00225
    • (2012) Rev Econ Stat , vol.99 , Issue.4 , pp. 1014-1024
    • Doz, C.1    Giannone, D.2    Reichlin, L.3
  • 26
    • 84929361819 scopus 로고    scopus 로고
    • What is big data?
    • Accessed 11 Jan 2012
    • Dumbill E (2012) What is big data? An introduction to the big data landscape. http://strata.oreilly.com/2012/01/what-is-big-data.html. Accessed 11 Jan 2012
    • (2012) An Introduction to the Big Data Landscape
    • Dumbill, E.1
  • 27
    • 84868100794 scopus 로고    scopus 로고
    • Accessed 16 Feb 2012
    • Duhigg C (2012) How companies learn your secrets. http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html. Accessed 16 Feb 2012
    • (2012) How Companies Learn Your Secrets
    • Duhigg, C.1
  • 30
    • 0035998182 scopus 로고    scopus 로고
    • Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models
    • Engle RF (2002) Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J Bus Econ Stat 20(3):339–350 DOI: 10.1198/073500102288618487
    • (2002) J Bus Econ Stat , vol.20 , Issue.3 , pp. 339-350
    • Engle, R.F.1
  • 31
    • 84974122247 scopus 로고
    • Multivariate simultaneous GARCH
    • Engle RF, Kroner K (1995) Multivariate simultaneous GARCH. Econom Theory 11(1):122–150 DOI: 10.1017/S0266466600009063
    • (1995) Econom Theory , vol.11 , Issue.1 , pp. 122-150
    • Engle, R.F.1    Kroner, K.2
  • 34
    • 0034364595 scopus 로고    scopus 로고
    • The generalized factor model: identification and estimation
    • Forni M, Hallin M, Lippi M, Reichlin L (2000) The generalized factor model: identification and estimation. Rev Econ Stat 82(4):540–554 DOI: 10.1162/003465300559037
    • (2000) Rev Econ Stat , vol.82 , Issue.4 , pp. 540-554
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 35
    • 24644522163 scopus 로고    scopus 로고
    • The generalized dynamic factor model: one-sided estimation and forecasting
    • Forni M, Hallin M, Lippi M, Reichlin L (2005) The generalized dynamic factor model: one-sided estimation and forecasting. J Am Stat Assoc 100(471):830–840 DOI: 10.1198/016214504000002050
    • (2005) J Am Stat Assoc , vol.100 , Issue.471 , pp. 830-840
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 36
    • 79960216631 scopus 로고    scopus 로고
    • Calculating economic indexes per household and censal section from official Spanish databases
    • Frutos S, Menasalva E, Montes C, Segovia J (2003) Calculating economic indexes per household and censal section from official Spanish databases. Intellt Data Anal 7(6):603–613
    • (2003) Intellt Data Anal , vol.7 , Issue.6 , pp. 603-613
    • Frutos, S.1    Menasalva, E.2    Montes, C.3    Segovia, J.4
  • 38
    • 84991756585 scopus 로고    scopus 로고
    • Census mail list trimming using SAS data mining
    • Washington, DC, 9 May 2009
    • Garber SC (2009) Census mail list trimming using SAS data mining. In: RRD Research Report, Washington, DC, 9 May 2009
    • (2009) RRD Research Report
    • Garber, S.C.1
  • 39
    • 85020573334 scopus 로고    scopus 로고
    • A brief review of data mining applications in the energy industry
    • Ghodsi M (2014) A brief review of data mining applications in the energy industry. Int J Energy Stat 2(1):49–57
    • (2014) Int J Energy Stat , vol.2 , Issue.1 , pp. 49-57
    • Ghodsi, M.1
  • 42
    • 84902167151 scopus 로고    scopus 로고
    • Using large datasets to forecast sectoral unemployment
    • Gupta R, Kabundi A, Miller S, Uwilingiye J (2013) Using large datasets to forecast sectoral unemployment. Stat Methods Appl 23(2):229–264 DOI: 10.1007/s10260-013-0243-6
    • (2013) Stat Methods Appl , vol.23 , Issue.2 , pp. 229-264
    • Gupta, R.1    Kabundi, A.2    Miller, S.3    Uwilingiye, J.4
  • 44
    • 84968591605 scopus 로고    scopus 로고
    • Accessed 20 Nov 2014
    • Hamm S (2013) How big data can boost weather forecasting. http://readwrite.com/2013/02/28/how-big-data-can-boost-weather-forecasting#awesm=ou64ZEaKe2HtUu. Accessed 20 Nov 2014
    • (2013) How Big Data Can Boost Weather Forecasting
    • Hamm, S.1
  • 46
    • 67649803216 scopus 로고    scopus 로고
    • Mining the past to determine the future: problems and possibilities
    • Hand DJ (2009) Mining the past to determine the future: problems and possibilities. Int J Forecast 25(3):441–451 DOI: 10.1016/j.ijforecast.2008.09.004
    • (2009) Int J Forecast , vol.25 , Issue.3 , pp. 441-451
    • Hand, D.J.1
  • 47
    • 58949091426 scopus 로고    scopus 로고
    • Forecasting European industrial production with singular spectrum analysis
    • Hassani H, Heravi S, Zhigljavsky A (2009) Forecasting European industrial production with singular spectrum analysis. Int J Forecast 25(1):103–118 DOI: 10.1016/j.ijforecast.2008.09.007
    • (2009) Int J Forecast , vol.25 , Issue.1 , pp. 103-118
    • Hassani, H.1    Heravi, S.2    Zhigljavsky, A.3
  • 48
    • 84893555436 scopus 로고    scopus 로고
    • Forecasting UK industrial production with multivariate singular spectrum analysis
    • Hassani H, Heravi S, Zhigljavsky A (2013) Forecasting UK industrial production with multivariate singular spectrum analysis. J Forecast 32(5):395–408 DOI: 10.1002/for.2244
    • (2013) J Forecast , vol.32 , Issue.5 , pp. 395-408
    • Hassani, H.1    Heravi, S.2    Zhigljavsky, A.3
  • 49
    • 84991759885 scopus 로고    scopus 로고
    • Data mining and official statistics: the past, the present & the future
    • Hassani H, Saporta G, Silva ES (2014) Data mining and official statistics: the past, the present & the future. Big Data 2(1):BD1–BD10 DOI: 10.1089/big.2013.0038
    • (2014) Big Data , vol.2 , Issue.1 , pp. BD1-BD10
    • Hassani, H.1    Saporta, G.2    Silva, E.S.3
  • 50
    • 84905372214 scopus 로고    scopus 로고
    • Forecasting US tourist arrivals using optimal singular spectrum analysis
    • Hassani H, Webster A, Silva ES, Heravi H (2015) Forecasting US tourist arrivals using optimal singular spectrum analysis. Tour Manag 46:322–335
    • (2015) Tour Manag , vol.46 , pp. 322-335
    • Hassani, H.1    Webster, A.2    Silva, E.S.3    Heravi, H.4
  • 52
    • 84925364140 scopus 로고    scopus 로고
    • Big data: the new challenges in data mining
    • Jadhav DK (2013) Big data: the new challenges in data mining. Int J Innov Res ComputSci & Technol 1(2):39–42
    • (2013) Int J Innov Res ComputSci & Technol , vol.1 , Issue.2 , pp. 39-42
    • Jadhav, D.K.1
  • 54
    • 62549140553 scopus 로고    scopus 로고
    • A parametric estimation method for dynamic factor models of large dimensions
    • Kapetanios G, Marcellino M (2009) A parametric estimation method for dynamic factor models of large dimensions. J Time Ser Anal 30(2):208–238 DOI: 10.1111/j.1467-9892.2009.00607.x
    • (2009) J Time Ser Anal , vol.30 , Issue.2 , pp. 208-238
    • Kapetanios, G.1    Marcellino, M.2
  • 56
    • 84874021974 scopus 로고    scopus 로고
    • Forecasting with medium and large Bayesian VARs
    • Koop GM (2013) Forecasting with medium and large Bayesian VARs. J Appl Econom 28(2):177–203 DOI: 10.1002/jae.1270
    • (2013) J Appl Econom , vol.28 , Issue.2 , pp. 177-203
    • Koop, G.M.1
  • 57
    • 84884342263 scopus 로고    scopus 로고
    • Forecasting regional GDP with factor models: how useful are national and international data?
    • Kopoin A, Moran K, Paré JP (2013) Forecasting regional GDP with factor models: how useful are national and international data? Econ Lett 121(2):267–270 DOI: 10.1016/j.econlet.2013.08.007
    • (2013) Econ Lett , vol.121 , Issue.2 , pp. 267-270
    • Kopoin, A.1    Moran, K.2    Paré, J.P.3
  • 58
    • 33745822446 scopus 로고    scopus 로고
    • A survey of knowledge discover and data mining process models
    • Kurgan L, Musilek P (2006) A survey of knowledge discover and data mining process models. Knowl Eng Rev 21(1):1–24 DOI: 10.1017/S0269888906000737
    • (2006) Knowl Eng Rev , vol.21 , Issue.1 , pp. 1-24
    • Kurgan, L.1    Musilek, P.2
  • 60
    • 84863741148 scopus 로고    scopus 로고
    • Accessed 17 Sep 2012
    • Lohr S (2013) The age of big data. http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?pagewanted=all&_r=1&. Accessed 17 Sep 2012
    • (2013) The Age of Big Data
    • Lohr, S.1
  • 61
    • 33746152094 scopus 로고    scopus 로고
    • Boosting for high multivariate responses in high-dimensional linear regression
    • Lutz RW, Buhlmann P (2006) Boosting for high multivariate responses in high-dimensional linear regression. Stat Sin 16:471–494
    • (2006) Stat Sin , vol.16 , pp. 471-494
    • Lutz, R.W.1    Buhlmann, P.2
  • 62
    • 84860443491 scopus 로고    scopus 로고
    • From databases to big data
    • Madden S (2012) From databases to big data. IEEE Internet Comput 16(3):4–6 DOI: 10.1109/MIC.2012.50
    • (2012) IEEE Internet Comput , vol.16 , Issue.3 , pp. 4-6
    • Madden, S.1
  • 63
    • 84864030546 scopus 로고    scopus 로고
    • Big data: The next frontier for innovation, competition, and productivity
    • Accessed 20 Nov 2014
    • Manyika J, Chui, M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation. Accessed 20 Nov 2014
    • (2011) Mckinsey Global Institute.
    • Manyika, J.1    Chui, M.2    Brown, B.3    Bughin, J.4    Dobbs, R.5    Roxburgh, C.6    Byers, A.H.7
  • 66
    • 85094200356 scopus 로고    scopus 로고
    • Modeling NASS survey non-response using classification trees
    • Washington DC, 1 Nov 2010
    • McCarthy J, Jacob T, McCracken A (2010) Modeling NASS survey non-response using classification trees. In: RDD Research Report, Washington DC, 1 Nov 2010
    • (2010) RDD Research Report
    • McCarthy, J.1    Jacob, T.2    McCracken, A.3
  • 67
    • 85015734686 scopus 로고    scopus 로고
    • Disruptive possibilities: How big data changes everything
    • Available via, Accessed 25 Jul 2012
    • Needham J (2013) Disruptive possibilities: how big data changes everything. O’Reilly media. Available via: http://chimera.labs.oreilly.com/books/1234000000914/index.html. Accessed 25 Jul 2012
    • (2013) O’Reilly Media.
    • Needham, J.1
  • 68
    • 0043007739 scopus 로고    scopus 로고
    • Neural network imputation applied to the Norwegian 1990 population census data
    • Nordbotten S (1996) Neural network imputation applied to the Norwegian 1990 population census data. J Off Stat 12(4):385–401
    • (1996) J Off Stat , vol.12 , Issue.4 , pp. 385-401
    • Nordbotten, S.1
  • 69
    • 77955270910 scopus 로고    scopus 로고
    • Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
    • Nguyen HT, Nabney IT (2010) Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 35(9):3674–3685 DOI: 10.1016/j.energy.2010.05.013
    • (2010) Energy , vol.35 , Issue.9 , pp. 3674-3685
    • Nguyen, H.T.1    Nabney, I.T.2
  • 70
    • 85082800141 scopus 로고    scopus 로고
    • Forecasting using a large number of predictors: Bayesian model averaging versus principal components regression
    • Accessed 29 May 2013
    • Ouysse R (2013) Forecasting using a large number of predictors: Bayesian model averaging versus principal components regression. Australian School of Business Research Paper, No. 2013ECON04, pp 1–34. http://research.economics.unsw.edu.au/RePEc/papers/2013-04.pdf. Accessed 29 May 2013
    • (2013) Australian School of Business Research Paper, No. 2013ECON04 , pp. 1-34
    • Ouysse, R.1
  • 71
    • 84883694220 scopus 로고    scopus 로고
    • Bayesian regression mixtures of experts for geo-referenced data
    • Paaß G, Kindermann J (2003) Bayesian regression mixtures of experts for geo-referenced data. Intell Data Anal 7(6):567–582
    • (2003) Intell Data Anal , vol.7 , Issue.6 , pp. 567-582
    • Paaß, G.1    Kindermann, J.2
  • 73
    • 84916234602 scopus 로고    scopus 로고
    • Accessed 28 Jul 2013
    • Press G (2013) A very short history of big data. http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/2/. Accessed 28 Jul 2013
    • (2013) A Very Short History of Big Data
    • Press, G.1
  • 77
    • 34547509116 scopus 로고    scopus 로고
    • Forecasting German GDP using alternative factor odels based on large datasets
    • Schumacher C (2007) Forecasting German GDP using alternative factor odels based on large datasets. J Forecast 26(4):271–302 DOI: 10.1002/for.1026
    • (2007) J Forecast , vol.26 , Issue.4 , pp. 271-302
    • Schumacher, C.1
  • 78
    • 49349105919 scopus 로고    scopus 로고
    • Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data
    • Schumacher C, Breitung J (2008) Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data. Int J Forecast 24(3):386–398 DOI: 10.1016/j.ijforecast.2008.03.008
    • (2008) Int J Forecast , vol.24 , Issue.3 , pp. 386-398
    • Schumacher, C.1    Breitung, J.2
  • 79
    • 84930417154 scopus 로고    scopus 로고
    • Big Data: History, current status, and challenges going forward
    • Shi Y (2014) Big Data: history, current status, and challenges going forward. Bridge 44(4):6–11
    • (2014) Bridge , vol.44 , Issue.4 , pp. 6-11
    • Shi, Y.1
  • 81
    • 84905383908 scopus 로고    scopus 로고
    • A combination forecast for energy-related CO2 emissions in the United States
    • Silva ES (2013) A combination forecast for energy-related CO2 emissions in the United States. Int J Energy Stat 1(4):269–279 DOI: 10.1142/S2335680413500191
    • (2013) Int J Energy Stat , vol.1 , Issue.4 , pp. 269-279
    • Silva, E.S.1
  • 82
    • 84939988930 scopus 로고    scopus 로고
    • On the use of singular spectrum analysis for forecasting US trade before, during and after the 2008 recession
    • Silva ES, Hassani H (2015) On the use of singular spectrum analysis for forecasting US trade before, during and after the 2008 recession. Int Econ. doi:10.1016/j.inteco.2014.11.003 DOI: 10.1016/j.inteco.2014.11.003
    • (2015) Int Econ
    • Silva, E.S.1    Hassani, H.2
  • 83
    • 84944056205 scopus 로고    scopus 로고
    • Developing risk management as a competitive capability
    • Silva ES, Wu Y, Ojiako U (2013) Developing risk management as a competitive capability. Strateg Change 22(5–6):281–294 DOI: 10.1002/jsc.1940
    • (2013) Strateg Change , vol.22 , Issue.5-6 , pp. 281-294
    • Silva, E.S.1    Wu, Y.2    Ojiako, U.3
  • 87
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock JH, Watson MW (2002) Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97(460):1167–1179 DOI: 10.1198/016214502388618960
    • (2002) J Am Stat Assoc , vol.97 , Issue.460 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2
  • 88
    • 53649106431 scopus 로고    scopus 로고
    • Forecasting with many predictors
    • Elliott G, Granger CWJ, Timmermann A, (eds), Elsevier, Amsterdam
    • Stock JH, Watson MW (2006) Forecasting with many predictors. In: Elliott G, Granger CWJ, Timmermann A (eds) Handbook of economic forecasting. Elsevier, Amsterdam, pp 517–554
    • (2006) Handbook of economic forecasting , pp. 517-554
    • Stock, J.H.1    Watson, M.W.2
  • 89
    • 84860266561 scopus 로고    scopus 로고
    • Forecasting in dynamic factor models subject to structural instability
    • Hendry David F, Castle J, Shephard N, (eds), Oxford University Press, Oxford
    • Stock JH, Watson MW (2008) Forecasting in dynamic factor models subject to structural instability. In: Hendry David F, Castle J, Shephard N (eds) The methodology and practice of econometrics: a festschrift in honour of professor. Oxford University Press, Oxford, pp 173–205
    • (2008) The methodology and practice of econometrics: a festschrift in honour of professor , pp. 173-205
    • Stock, J.H.1    Watson, M.W.2
  • 90
    • 85094211123 scopus 로고    scopus 로고
    • Accessed 25 Nov 2013
    • Thornton D (2013) The Problem with Big Data. http://moneyweek.com/arria-nlg-the-problem-with-big-data/. Accessed 25 Nov 2013
    • (2013) The Problem with Big Data
    • Thornton, D.1
  • 91
    • 84927578570 scopus 로고    scopus 로고
    • Accessed 2 Oct 2013
    • Tucker P (2013) The future is not a destination. http://www.slate.com/articles/technology/future_tense/2013/10/futurist_magazine_s_predictions_on_quantum_computing_big_data_and_more.html. Accessed 2 Oct 2013
    • (2013) The Future is Not a Destination
    • Tucker, P.1
  • 92
    • 84903161818 scopus 로고    scopus 로고
    • Big data: new tricks for econometrics
    • Varian HR (2014) Big data: new tricks for econometrics. J Econ Perspect 28(2):3–28 DOI: 10.1257/jep.28.2.3
    • (2014) J Econ Perspect , vol.28 , Issue.2 , pp. 3-28
    • Varian, H.R.1
  • 93
    • 85004091464 scopus 로고    scopus 로고
    • Electricity consumption forecasting in the age of big data
    • Wang X (2013) Electricity consumption forecasting in the age of big data. Telkomnika 11(9):5262–5266
    • (2013) Telkomnika , vol.11 , Issue.9 , pp. 5262-5266
    • Wang, X.1
  • 96
    • 78650559748 scopus 로고    scopus 로고
    • Fraudulent behaviour forecast in telecom industry based on data mining technology
    • Wu S, Kang N, Yang L (2007) Fraudulent behaviour forecast in telecom industry based on data mining technology. Commun IIMA 7(4):1–6
    • (2007) Commun IIMA , vol.7 , Issue.4 , pp. 1-6
    • Wu, S.1    Kang, N.2    Yang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.