-
1
-
-
11144310036
-
Spatial models of virus-immune dynamics
-
[1] Funka, G.A., Jansen, V.A.A., Bonhoffer, S., Killingback, T., Spatial models of virus-immune dynamics. J. Theor. Biol. 233 (2005), 221–236.
-
(2005)
J. Theor. Biol.
, vol.233
, pp. 221-236
-
-
Funka, G.A.1
Jansen, V.A.A.2
Bonhoffer, S.3
Killingback, T.4
-
2
-
-
36249015432
-
Viral reproductive strategies: how can lytic viruses be evolutionarily competitive?
-
[2] Komarova, N.L., Viral reproductive strategies: how can lytic viruses be evolutionarily competitive?. J. Theor. Biol. 249 (2007), 766–784.
-
(2007)
J. Theor. Biol.
, vol.249
, pp. 766-784
-
-
Komarova, N.L.1
-
3
-
-
44749094468
-
Dynamics of an HBV model with diffusion and delay
-
[3] Wang, K., Wang, W., Dynamics of an HBV model with diffusion and delay. J. Theor. Biol. 253 (2008), 36–44.
-
(2008)
J. Theor. Biol.
, vol.253
, pp. 36-44
-
-
Wang, K.1
Wang, W.2
-
4
-
-
61449085429
-
An HBV model with diffusion and time delay
-
[4] Xu, R., Ma, Z., An HBV model with diffusion and time delay. J. Theor. Biol. 257 (2009), 499–509.
-
(2009)
J. Theor. Biol.
, vol.257
, pp. 499-509
-
-
Xu, R.1
Ma, Z.2
-
5
-
-
0343717093
-
Travelling wave fronts of reaction diffusion systems with delay
-
[5] Wu, J., Zou, X., Travelling wave fronts of reaction diffusion systems with delay. J. Dynam. Differential Equations 13 (2001), 651–687.
-
(2001)
J. Dynam. Differential Equations
, vol.13
, pp. 651-687
-
-
Wu, J.1
Zou, X.2
-
6
-
-
0035836903
-
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
-
[6] Ma, S., Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differential Equations 171 (2001), 294–314.
-
(2001)
J. Differential Equations
, vol.171
, pp. 294-314
-
-
Ma, S.1
-
7
-
-
33646721912
-
Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems
-
[7] Li, W., Lin, G., Ruan, S., Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems. Nonlinearity 19 (2006), 1253–1273.
-
(2006)
Nonlinearity
, vol.19
, pp. 1253-1273
-
-
Li, W.1
Lin, G.2
Ruan, S.3
-
8
-
-
77955124495
-
Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay
-
[8] Gan, Q., Xu, R., Yang, P., Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J. Appl. Math. 75 (2010), 392–417.
-
(2010)
IMA J. Appl. Math.
, vol.75
, pp. 392-417
-
-
Gan, Q.1
Xu, R.2
Yang, P.3
-
9
-
-
84885320086
-
Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response
-
[9] Zhang, Y., Xu, Z., Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response. Nonlinear Anal. RWA 15 (2014), 118–139.
-
(2014)
Nonlinear Anal. RWA
, vol.15
, pp. 118-139
-
-
Zhang, Y.1
Xu, Z.2
-
10
-
-
0345116416
-
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models
-
[10] Thieme, H.R., Zhao, X., Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differential Equations 195 (2003), 430–470.
-
(2003)
J. Differential Equations
, vol.195
, pp. 430-470
-
-
Thieme, H.R.1
Zhao, X.2
-
11
-
-
33645660285
-
Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity
-
[11] Huang, J., Zou, X., Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity. Acta Math. Appl. Sin. 22 (2006), 243–256.
-
(2006)
Acta Math. Appl. Sin.
, vol.22
, pp. 243-256
-
-
Huang, J.1
Zou, X.2
-
12
-
-
70149097795
-
Travelling waves solutions for an infection-age structured model with diffusion
-
[12] Ducrot, A., Magal, P., Travelling waves solutions for an infection-age structured model with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 459–482.
-
(2009)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.139
, pp. 459-482
-
-
Ducrot, A.1
Magal, P.2
-
13
-
-
84939877368
-
Repulsion effect on superinfecting virions by infected cells
-
[13] Lai, X., Zou, X., Repulsion effect on superinfecting virions by infected cells. Bull. Math. Biol. 76 (2014), 2806–2833.
-
(2014)
Bull. Math. Biol.
, vol.76
, pp. 2806-2833
-
-
Lai, X.1
Zou, X.2
-
14
-
-
70350726625
-
Avian-human influenza epidemic model with diffusion
-
[14] Kim, K., Kim, Z., Zhang, L., Avian-human influenza epidemic model with diffusion. Nonlinear Anal. RWA 11 (2010), 313–322.
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 313-322
-
-
Kim, K.1
Kim, Z.2
Zhang, L.3
-
15
-
-
84864282127
-
A numerical study on an influenza epidemic model with vaccination and diffusion
-
[15] Samsuzzoha, M.d., Singh, M., Lucy, D., A numerical study on an influenza epidemic model with vaccination and diffusion. Appl. Math. Comput. 219 (2012), 122–141.
-
(2012)
Appl. Math. Comput.
, vol.219
, pp. 122-141
-
-
Samsuzzoha, M.D.1
Singh, M.2
Lucy, D.3
-
16
-
-
76749169041
-
Repulsion of superinfecting virions: a mechanism for rapid virus spread
-
[16] Doceul, V., Hollinshead, M., van der Linden, L., Smith, G.L., Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327 (2010), 873–876.
-
(2010)
Science
, vol.327
, pp. 873-876
-
-
Doceul, V.1
Hollinshead, M.2
van der Linden, L.3
Smith, G.L.4
-
17
-
-
44649191100
-
Reverse leukocyte migration can be attractive or repulsive
-
[17] Huttenlocher, A., Poznansky, M.C., Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol. 16 (2008), 298–306.
-
(2008)
Trends Cell Biol.
, vol.16
, pp. 298-306
-
-
Huttenlocher, A.1
Poznansky, M.C.2
-
18
-
-
26044474453
-
Fugetaxis: active movement of leukocytes away from a chemokinetic agent
-
[18] Vianello, F., Olszak, I.T., Poznansky, M.C., Fugetaxis: active movement of leukocytes away from a chemokinetic agent. J. Mol. Med. 83 (2005), 752–763.
-
(2005)
J. Mol. Med.
, vol.83
, pp. 752-763
-
-
Vianello, F.1
Olszak, I.T.2
Poznansky, M.C.3
-
19
-
-
63049107118
-
A users guide to PDE models for chemotaxis
-
[19] Hillen, T., Painter, K.J., A users guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183–217.
-
(2009)
J. Math. Biol.
, vol.58
, pp. 183-217
-
-
Hillen, T.1
Painter, K.J.2
-
20
-
-
33750476278
-
T cell chemotaxis in a simple microfluidic device
-
[20] Lin, F., Butcher, E.C., T cell chemotaxis in a simple microfluidic device. Lab Chip 11 (2006), 1462–1469.
-
(2006)
Lab Chip
, vol.11
, pp. 1462-1469
-
-
Lin, F.1
Butcher, E.C.2
-
21
-
-
84863001552
-
+ T cells
-
+ T cells. Nature 486 (2012), 545–548.
-
(2012)
Nature
, vol.486
, pp. 545-548
-
-
Harris, T.H.1
Banigan, E.J.2
Christian, D.A.3
Konradt, C.4
Tait Wojno, E.D.5
Norose, K.6
Wilson, E.H.7
John, B.8
Weninger, W.9
Luster, A.D.10
Liu, A.J.11
Hunter, C.A.12
-
22
-
-
84877070324
-
Turing patterns from dynamics of early HIV infection
-
[22] Stancevic, O., Angstmann, C.N., Murray, J.M., Henry, B.I., Turing patterns from dynamics of early HIV infection. Bull. Math. Biol. 75 (2013), 774–795.
-
(2013)
Bull. Math. Biol.
, vol.75
, pp. 774-795
-
-
Stancevic, O.1
Angstmann, C.N.2
Murray, J.M.3
Henry, B.I.4
-
23
-
-
34347272262
-
Asymptotic properties of an HIV-I infection model with time delay
-
[23] Li, D., Ma, W., Asymptotic properties of an HIV-I infection model with time delay. J. Math. Anal. Appl. 335 (2007), 683–691.
-
(2007)
J. Math. Anal. Appl.
, vol.335
, pp. 683-691
-
-
Li, D.1
Ma, W.2
-
24
-
-
33846327950
-
Global stability and periodic solution of the viral dynamics
-
[24] Song, X., Neumann, A., Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 329 (2007), 281–297.
-
(2007)
J. Math. Anal. Appl.
, vol.329
, pp. 281-297
-
-
Song, X.1
Neumann, A.2
-
25
-
-
79953187556
-
Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response
-
[25] Huang, G., Ma, W., Takeuchi, T., Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 24 (2011), 1199–1203.
-
(2011)
Appl. Math. Lett.
, vol.24
, pp. 1199-1203
-
-
Huang, G.1
Ma, W.2
Takeuchi, T.3
-
26
-
-
84856533303
-
Mathematical analysis of a virus dynamics model with general incidence rate and cure rate
-
[26] Hattaf, K., Yousfi, N., Tridan, A., Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal. RWA 13 (2012), 1866–1872.
-
(2012)
Nonlinear Anal. RWA
, vol.13
, pp. 1866-1872
-
-
Hattaf, K.1
Yousfi, N.2
Tridan, A.3
-
27
-
-
0000076167
-
Mutual interference between parasites or predators and its effect on searching efficiency
-
[27] Beddington, J.R., Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44 (1975), 331–340.
-
(1975)
J. Anim. Ecol.
, vol.44
, pp. 331-340
-
-
Beddington, J.R.1
-
28
-
-
0001657717
-
A model for trophic interaction
-
[28] DeAngelis, D.L., Goldstein, R.A., O'Neill, R.V., A model for trophic interaction. Ecology 56 (1975), 881–892.
-
(1975)
Ecology
, vol.56
, pp. 881-892
-
-
DeAngelis, D.L.1
Goldstein, R.A.2
O'Neill, R.V.3
-
29
-
-
0024349915
-
Non-linear phenomena in host–parasite interactions
-
[29] Anderson, R.M., May, R.M., Gupta, S., Non-linear phenomena in host–parasite interactions. Parasitology 99 (1989), 59–79.
-
(1989)
Parasitology
, vol.99
, pp. 59-79
-
-
Anderson, R.M.1
May, R.M.2
Gupta, S.3
-
30
-
-
84860470609
-
Global dynamics of a delayed HIV-1 infection model with absorption and saturation infection
-
(13 pages)
-
[30] Xu, R., Global dynamics of a delayed HIV-1 infection model with absorption and saturation infection. Int. J. Biomath., 5, 2012, 1260012 (13 pages).
-
(2012)
Int. J. Biomath.
, vol.5
, pp. 1260012
-
-
Xu, R.1
-
31
-
-
0003796630
-
Sobolev Spaces
-
Academic Press New York
-
[31] Adams, R.A., Sobolev Spaces. 1975, Academic Press, New York.
-
(1975)
-
-
Adams, R.A.1
-
32
-
-
0001835099
-
Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems
-
H.J. Schmeisser H. Triebel Teubner Stuttgart
-
[32] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Schmeisser, H.J., Triebel, H., (eds.) Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992) Teubner-Texte zur Mathematik, vol 133, 1993, Teubner, Stuttgart, 9–126.
-
(1993)
Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), Teubner-Texte zur Mathematik
, vol.133
, pp. 9-126
-
-
Amann, H.1
-
33
-
-
0001742516
-
Dynamical theory of quasilinear parabolic equations III: global existence
-
[33] Amann, H., Dynamical theory of quasilinear parabolic equations III: global existence. Math. Z. 202 (1989), 219–250.
-
(1989)
Math. Z.
, vol.202
, pp. 219-250
-
-
Amann, H.1
-
34
-
-
79952575808
-
A reaction-diffusion malaria model with incubation period in the vector population
-
[34] Lou, Y., Zhao, X., A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62 (2011), 543–568.
-
(2011)
J. Math. Biol.
, vol.62
, pp. 543-568
-
-
Lou, Y.1
Zhao, X.2
-
35
-
-
0003726932
-
-
American Mathematical Society Providence, RI
-
[35] Smith, H.L., Monotone Dynamic Systems: An Introduction to the Theory of Competitive and Cooperative Systems Math. Surveys Monogr., vol. 41, 1995, American Mathematical Society, Providence, RI.
-
(1995)
Monotone Dynamic Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr.
, vol.41
-
-
Smith, H.L.1
-
36
-
-
79952343940
-
A nonlocal and time-delayed reaction-diffusion model of dengue transmission
-
[36] Wang, W., Zhao, X., A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71 (2011), 147–168.
-
(2011)
SIAM J. Appl. Math.
, vol.71
, pp. 147-168
-
-
Wang, W.1
Zhao, X.2
-
38
-
-
67649378819
-
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity
-
[38] Thieme, H.R., Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70 (2009), 188–211.
-
(2009)
SIAM J. Appl. Math.
, vol.70
, pp. 188-211
-
-
Thieme, H.R.1
-
39
-
-
0036845274
-
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
-
[39] van den Driessche, P., Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002), 29–48.
-
(2002)
Math. Biosci.
, vol.180
, pp. 29-48
-
-
van den Driessche, P.1
Watmough, J.2
-
40
-
-
84871394066
-
Basic reproduction numbers for reaction-diffusion epidemic model
-
[40] Wang, W., Zhao, X., Basic reproduction numbers for reaction-diffusion epidemic model. SIAM J. Appl. Dyn. Syst. 11 (2012), 1652–1673.
-
(2012)
SIAM J. Appl. Dyn. Syst.
, vol.11
, pp. 1652-1673
-
-
Wang, W.1
Zhao, X.2
-
41
-
-
32044460132
-
Perspectives on the basic reproductive ratio
-
[41] Heffernan, J.M., Smith, R.J., Wahl, L.M., Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2 (2005), 281–293.
-
(2005)
J. R. Soc. Interface
, vol.2
, pp. 281-293
-
-
Heffernan, J.M.1
Smith, R.J.2
Wahl, L.M.3
-
42
-
-
0003744101
-
Asymptotic Behavior of Dissipative Systems
-
American Mathematical Society Providence, RI
-
[42] Hale, J.K., Asymptotic Behavior of Dissipative Systems. 1988, American Mathematical Society, Providence, RI.
-
(1988)
-
-
Hale, J.K.1
-
43
-
-
0035415180
-
Robust persistence for semidynamical systems
-
[43] Smith, H.L., Zhao, X., Robust persistence for semidynamical systems. Nonlinear Anal. 47 (2001), 6169–6179.
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 6169-6179
-
-
Smith, H.L.1
Zhao, X.2
-
44
-
-
0003587797
-
Theory and Applications of Partial Functional Differential Equations
-
Springer-Verlag New York
-
[44] Wu, J., Theory and Applications of Partial Functional Differential Equations. 1996, Springer-Verlag, New York.
-
(1996)
-
-
Wu, J.1
-
45
-
-
77952672921
-
Convergence results and Poincar'e-Bendixson trichotomy for asymptotically autonomous differential equations
-
[45] Thieme, H.R., Zhao, X., Convergence results and Poincar'e-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30 (1992), 755–763.
-
(1992)
J. Math. Biol.
, vol.30
, pp. 755-763
-
-
Thieme, H.R.1
Zhao, X.2
-
46
-
-
0042393823
-
Dynamical Systems in Population Biology
-
Springer New York
-
[46] Zhao, X., Dynamical Systems in Population Biology. 2003, Springer, New York.
-
(2003)
-
-
Zhao, X.1
-
47
-
-
0012470921
-
Mathematical Biology II: Spatial Models and Biomedical Applications
-
Springer New York
-
[47] Murray, J.D., Mathematical Biology II: Spatial Models and Biomedical Applications. 2000, Springer, New York.
-
(2000)
-
-
Murray, J.D.1
-
48
-
-
3042695365
-
Global properties of basic virus dynamics models
-
[48] Korobeinikov, A., Global properties of basic virus dynamics models. Bull. Math. Biol. 66 (2004), 879–883.
-
(2004)
Bull. Math. Biol.
, vol.66
, pp. 879-883
-
-
Korobeinikov, A.1
-
49
-
-
77955746205
-
Global properties of a class of HIV models
-
[49] Elaiw, A.M., Global properties of a class of HIV models. Nonlinear Anal. RWA 11 (2010), 2253–2263.
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 2253-2263
-
-
Elaiw, A.M.1
-
50
-
-
0035866130
-
Stability and bifurcation for a delayed predator-prey model and the effect of diffusion
-
[50] Faria, T., Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl. 254 (2001), 433–463.
-
(2001)
J. Math. Anal. Appl.
, vol.254
, pp. 433-463
-
-
Faria, T.1
-
51
-
-
0042074672
-
Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays
-
[51] Pao, C.V., Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays. Nonlinear Anal. RWA 5 (2004), 91–104.
-
(2004)
Nonlinear Anal. RWA
, vol.5
, pp. 91-104
-
-
Pao, C.V.1
-
52
-
-
77955173254
-
Global dynamics of an in-host viral model with intracellular delay
-
[52] Li, M.Y., Shu, H., Global dynamics of an in-host viral model with intracellular delay. Bull. Math. Biol. 72 (2010), 1492–1505.
-
(2010)
Bull. Math. Biol.
, vol.72
, pp. 1492-1505
-
-
Li, M.Y.1
Shu, H.2
-
53
-
-
84926186890
-
Global stability of a diffusive virus dynamics model with general incidence function and time delay
-
[53] Connell McCluskey, C., Yang, Y., Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal. RWA 25 (2015), 64–78.
-
(2015)
Nonlinear Anal. RWA
, vol.25
, pp. 64-78
-
-
Connell McCluskey, C.1
Yang, Y.2
-
54
-
-
0003492055
-
Introduction to Functional Differential Equations
-
Springer-Verlag New York
-
[54] Hale, J.K., Verduyn Lunel, S.M., Introduction to Functional Differential Equations. 1993, Springer-Verlag, New York.
-
(1993)
-
-
Hale, J.K.1
Verduyn Lunel, S.M.2
-
55
-
-
4544271418
-
Projecting rates of spread for invasive species
-
[55] Neubert, M.G., Parker, I.M., Projecting rates of spread for invasive species. Risk Anal. 24 (2004), 817–831.
-
(2004)
Risk Anal.
, vol.24
, pp. 817-831
-
-
Neubert, M.G.1
Parker, I.M.2
|