-
1
-
-
0024366777
-
Mathematical and statistical studies of the epidemiology of HIV
-
Anderson R.M. Mathematical and statistical studies of the epidemiology of HIV. AIDS 3 (1989) 333-346
-
(1989)
AIDS
, vol.3
, pp. 333-346
-
-
Anderson, R.M.1
-
4
-
-
1642380503
-
A mathematical model of cell-to-cell HIV-1 that include a time delay
-
Culshaw R.V., Ruan S., and Webb G. A mathematical model of cell-to-cell HIV-1 that include a time delay. J. Math. Biol. 46 (2003) 425-444
-
(2003)
J. Math. Biol.
, vol.46
, pp. 425-444
-
-
Culshaw, R.V.1
Ruan, S.2
Webb, G.3
-
6
-
-
0029957041
-
Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay
-
Herz A.V.M., Bonhoeffer S., Anderson R.M., May R.M., and Nowak M.A. Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93 (1996) 7247-7251
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 7247-7251
-
-
Herz, A.V.M.1
Bonhoeffer, S.2
Anderson, R.M.3
May, R.M.4
Nowak, M.A.5
-
7
-
-
34347229555
-
Theoretical analysis of pathogen-immune interaction dynamical system models
-
Kyoto University (in Japanese)
-
Kajiwara T., and Sasaki T. Theoretical analysis of pathogen-immune interaction dynamical system models. Suri Kaiseki Kenkyujyo Kokyuroku vol. 1432 (2005), Kyoto University 172-177 (in Japanese)
-
(2005)
Suri Kaiseki Kenkyujyo Kokyuroku
, vol.1432
, pp. 172-177
-
-
Kajiwara, T.1
Sasaki, T.2
-
8
-
-
2942692340
-
A note on the stability analysis of pathogen-immune interaction dynamics
-
Kajiwara T., and Sasaki T. A note on the stability analysis of pathogen-immune interaction dynamics. Discrete Contin. Dyn. Syst. Ser. B 4 (2004) 615-622
-
(2004)
Discrete Contin. Dyn. Syst. Ser. B
, vol.4
, pp. 615-622
-
-
Kajiwara, T.1
Sasaki, T.2
-
10
-
-
0031416640
-
Nonlinear oscillation in models of immune responses to persistent viruses
-
Liu W. Nonlinear oscillation in models of immune responses to persistent viruses. Theoret. Popul. Biol. 52 (1997) 224-230
-
(1997)
Theoret. Popul. Biol.
, vol.52
, pp. 224-230
-
-
Liu, W.1
-
11
-
-
35648941937
-
-
Science Press, Beijing (in Chinese)
-
Ma Z., Zhou Y., Wang W., and Jin Z. Mathematical Models in Epidemiology Dynamics (2004), Science Press, Beijing (in Chinese)
-
(2004)
Mathematical Models in Epidemiology Dynamics
-
-
Ma, Z.1
Zhou, Y.2
Wang, W.3
Jin, Z.4
-
12
-
-
0032840595
-
Improved estimates for HIV-1 clearance rate and intracellular delay
-
Mittler J.E., Markowitz B., Ho D.D., and Perelson A.S. Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 13 (1999) 1415-1417
-
(1999)
AIDS
, vol.13
, pp. 1415-1417
-
-
Mittler, J.E.1
Markowitz, B.2
Ho, D.D.3
Perelson, A.S.4
-
13
-
-
0036297271
-
Mathematical analysis of a delay differential equation models of HIV-1 infection
-
Nelson P.W., and Perelson A.S. Mathematical analysis of a delay differential equation models of HIV-1 infection. Math. Biosci. 179 (2002) 73-94
-
(2002)
Math. Biosci.
, vol.179
, pp. 73-94
-
-
Nelson, P.W.1
Perelson, A.S.2
-
14
-
-
0029985351
-
Population dynamics of immune responses to persistent viruses
-
Nowak M.A., and Bangham C.R.M. Population dynamics of immune responses to persistent viruses. Science 272 (1996) 74-79
-
(1996)
Science
, vol.272
, pp. 74-79
-
-
Nowak, M.A.1
Bangham, C.R.M.2
-
15
-
-
0031581661
-
Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations
-
Nowak M.A., Bonhoeffer S., Shaw G.M., and May R.M. Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations. J. Theoret. Biol. 184 (1997) 203-217
-
(1997)
J. Theoret. Biol.
, vol.184
, pp. 203-217
-
-
Nowak, M.A.1
Bonhoeffer, S.2
Shaw, G.M.3
May, R.M.4
-
16
-
-
33845715494
-
Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay
-
Song M., and Ma W. Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay. Dyn. Contin. Discrete Impuls. Syst. 13 (2006) 199-208
-
(2006)
Dyn. Contin. Discrete Impuls. Syst.
, vol.13
, pp. 199-208
-
-
Song, M.1
Ma, W.2
|