메뉴 건너뛰기




Volumn 55, Issue 10, 2016, Pages 835-836

Machine Learning: A Primer for Child Psychiatrists

Author keywords

[No Author keywords available]

Indexed keywords

ATTENTION DEFICIT DISORDER; BRAIN SIZE; CHILD PSYCHIATRY; CORTICAL THICKNESS (BRAIN); DIAGNOSTIC ACCURACY; EDITORIAL; ENVIRONMENTAL FACTOR; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GENETICS; HUMAN; IMAGE ANALYSIS; MACHINE LEARNING; NEUROIMAGING; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; TREATMENT RESPONSE; CHILD; PSYCHIATRY;

EID: 84990857368     PISSN: 08908567     EISSN: 15275418     Source Type: Journal    
DOI: 10.1016/j.jaac.2016.07.766     Document Type: Editorial
Times cited : (9)

References (8)
  • 1
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: trends, perspectives, and prospects
    • 1 Jordan, M.I., Mitchell, T.M., Machine learning: trends, perspectives, and prospects. Science 349 (2015), 255–260.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 2
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • 2 Libbrecht, M.W., Noble, W.S., Machine learning applications in genetics and genomics. Nat Rev Genet 16 (2015), 321–332.
    • (2015) Nat Rev Genet , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 4
    • 84859730708 scopus 로고    scopus 로고
    • Annual research review: progress in using brain morphometry as a clinical tool for diagnosing psychiatric disorders
    • 4 Haubold, A., Peterson, B.S., Bansal, R., Annual research review: progress in using brain morphometry as a clinical tool for diagnosing psychiatric disorders. J Child Psychol Psychiatry 53 (2012), 519–535.
    • (2012) J Child Psychol Psychiatry , vol.53 , pp. 519-535
    • Haubold, A.1    Peterson, B.S.2    Bansal, R.3
  • 5
    • 77952298475 scopus 로고    scopus 로고
    • Predictive models of autism spectrum disorder based on brain regional cortical thickness
    • 5 Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., Herskovits, E.H., Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50 (2010), 589–599.
    • (2010) Neuroimage , vol.50 , pp. 589-599
    • Jiao, Y.1    Chen, R.2    Ke, X.3    Chu, K.4    Lu, Z.5    Herskovits, E.H.6
  • 6
    • 84983420329 scopus 로고    scopus 로고
    • Predicting methylphenidate response in ADHD using machine learning approaches
    • 6 Kim, J.W., Sharma, V., Ryan, N.D., Predicting methylphenidate response in ADHD using machine learning approaches. Int J Neuropsychopharmacol, 18, 2015, pyv052.
    • (2015) Int J Neuropsychopharmacol , vol.18 , pp. pyv052
    • Kim, J.W.1    Sharma, V.2    Ryan, N.D.3
  • 7
    • 84924968592 scopus 로고    scopus 로고
    • Potential application of machine learning in health outcomes research and some statistical cautions
    • 7 Crown, W.H., Potential application of machine learning in health outcomes research and some statistical cautions. Value Health 18 (2015), 137–140.
    • (2015) Value Health , vol.18 , pp. 137-140
    • Crown, W.H.1
  • 8
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • 8 Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930.
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.