메뉴 건너뛰기




Volumn 511, Issue , 2016, Pages 247-254

Failure pressures and drag reduction benefits of superhydrophobic wire screens

Author keywords

Air water interface; Breakthrough pressure; Slip length; Superhydrophobic wire screens; Wetting

Indexed keywords

AIR; AIR CLEANERS; DRAG; HYDROPHOBICITY; PHASE INTERFACES; WETTING; WIRE;

EID: 84990214130     PISSN: 09277757     EISSN: 18734359     Source Type: Journal    
DOI: 10.1016/j.colsurfa.2016.09.087     Document Type: Article
Times cited : (13)

References (40)
  • 1
    • 50249138386 scopus 로고    scopus 로고
    • Wetting and roughness
    • [1] Quere, D., Wetting and roughness. Annu. Rev. Mater. Res. 38 (2008), 71–99.
    • (2008) Annu. Rev. Mater. Res. , vol.38 , pp. 71-99
    • Quere, D.1
  • 3
    • 77952827224 scopus 로고    scopus 로고
    • Slip on superhydrophobic surfaces
    • [3] Rothstein, J.P., Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (2010), 89–109.
    • (2010) Annu. Rev. Fluid Mech. , vol.42 , pp. 89-109
    • Rothstein, J.P.1
  • 4
    • 33645741892 scopus 로고    scopus 로고
    • Direct velocity measurements of the flow past a drag-reducing utrahydrophobic surfaces
    • [4] Ou, J., Rothstein, J.P., Direct velocity measurements of the flow past a drag-reducing utrahydrophobic surfaces. Phys. Fluids, 17, 2005, 103606.
    • (2005) Phys. Fluids , vol.17 , pp. 103606
    • Ou, J.1    Rothstein, J.P.2
  • 5
    • 49249135351 scopus 로고    scopus 로고
    • Structured surfaces for giant liquid slip
    • [5] Lee, C., Choi, C.-H., Kim, C.-J., Structured surfaces for giant liquid slip. Phys. Rev. Lett., 101, 2008, 064501.
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 064501
    • Lee, C.1    Choi, C.-H.2    Kim, C.-J.3
  • 6
    • 84859971534 scopus 로고    scopus 로고
    • Effects of hydrostatic pressures on drag-reduction performance of submerged aerogel particle coatings
    • [6] Samaha, M.A., Tafreshi, H.V., Gad-el-Hak, M., Effects of hydrostatic pressures on drag-reduction performance of submerged aerogel particle coatings. Colloids Surf. A 399 (2012), 62–70.
    • (2012) Colloids Surf. A , vol.399 , pp. 62-70
    • Samaha, M.A.1    Tafreshi, H.V.2    Gad-el-Hak, M.3
  • 7
    • 84943427972 scopus 로고    scopus 로고
    • Instantaneous slip-length in superhydrophobic microchannels: grooves with dissimilar walls or arbitrary wall curvatures
    • [7] Hemeda, A., Tafreshi, H.V., Instantaneous slip-length in superhydrophobic microchannels: grooves with dissimilar walls or arbitrary wall curvatures. Phys. Fluids, 27, 2015, 102101.
    • (2015) Phys. Fluids , vol.27 , pp. 102101
    • Hemeda, A.1    Tafreshi, H.V.2
  • 8
    • 76249096746 scopus 로고    scopus 로고
    • The friction of a mesh-like super-hydrophobic surface
    • [8] Davis, A.M.J., Lauga, E., The friction of a mesh-like super-hydrophobic surface. Phys. Fluids, 21, 2009, 113101.
    • (2009) Phys. Fluids , vol.21 , pp. 113101
    • Davis, A.M.J.1    Lauga, E.2
  • 9
    • 84878800868 scopus 로고    scopus 로고
    • Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces
    • [9] Srinivasan, S., Choi, W., Park, K.C., Chhatre, S.S., Cohen, R.E., McKinley, G.H., Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9 (2013), 5691–5702.
    • (2013) Soft Matter , vol.9 , pp. 5691-5702
    • Srinivasan, S.1    Choi, W.2    Park, K.C.3    Chhatre, S.S.4    Cohen, R.E.5    McKinley, G.H.6
  • 11
    • 84921038654 scopus 로고    scopus 로고
    • Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces
    • [11] Srinivasan, S., Kleingartner, J.A., Gilbert, J.B., Cohen, R.E., Milne, A.J.B., McKinley, G.H., Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett., 114, 2015, 014501.
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 014501
    • Srinivasan, S.1    Kleingartner, J.A.2    Gilbert, J.B.3    Cohen, R.E.4    Milne, A.J.B.5    McKinley, G.H.6
  • 12
    • 78649933345 scopus 로고    scopus 로고
    • The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration
    • [12] Lee, C.H., Johnson, N., Drelich, J., Yap, Y.K., The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 49 (2011), 669–676.
    • (2011) Carbon , vol.49 , pp. 669-676
    • Lee, C.H.1    Johnson, N.2    Drelich, J.3    Yap, Y.K.4
  • 14
    • 84934960356 scopus 로고    scopus 로고
    • A facile one-step spray-coating process for the fabrication of a superhydrophobic attapulgite coated mesh for use in oil/water separation
    • [14] Li, J., Yan, L., Li, H., Li, J., Zha, F., Lei, Z., A facile one-step spray-coating process for the fabrication of a superhydrophobic attapulgite coated mesh for use in oil/water separation. RSC Adv., 5, 2015, 53802.
    • (2015) RSC Adv. , vol.5 , pp. 53802
    • Li, J.1    Yan, L.2    Li, H.3    Li, J.4    Zha, F.5    Lei, Z.6
  • 15
    • 84896361244 scopus 로고    scopus 로고
    • Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes
    • [15] Patel, S.U., Chase, G.G., Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep. Purif. Technol. 126 (2014), 62–68.
    • (2014) Sep. Purif. Technol. , vol.126 , pp. 62-68
    • Patel, S.U.1    Chase, G.G.2
  • 16
    • 84878047982 scopus 로고    scopus 로고
    • Electrospun superhydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) fibrous membranes for the separation of dispersed water from ultralow sulfur diesel
    • [16] Patel, S.U., Patel, S.U., Chase, G.G., Electrospun superhydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) fibrous membranes for the separation of dispersed water from ultralow sulfur diesel. Energy Fuels 27 (2013), 2458–2464.
    • (2013) Energy Fuels , vol.27 , pp. 2458-2464
    • Patel, S.U.1    Patel, S.U.2    Chase, G.G.3
  • 17
    • 79958001013 scopus 로고    scopus 로고
    • Repellency of the lotus leaf: resistance to water intrusion under hydrostatic pressure
    • [17] Extrand, C.W., Repellency of the lotus leaf: resistance to water intrusion under hydrostatic pressure. Langmuir 27 (2011), 6920–6925.
    • (2011) Langmuir , vol.27 , pp. 6920-6925
    • Extrand, C.W.1
  • 18
    • 84962788184 scopus 로고    scopus 로고
    • Combined wet chemical etching and anodic oxidation for obtaining the superhydrophobic meshes with anti-icing performance
    • [18] Ganne, A., Lebed, V.O., Gavrilov, A.I., Combined wet chemical etching and anodic oxidation for obtaining the superhydrophobic meshes with anti-icing performance. Colloids Surf. A 499 (2016), 150–155.
    • (2016) Colloids Surf. A , vol.499 , pp. 150-155
    • Ganne, A.1    Lebed, V.O.2    Gavrilov, A.I.3
  • 20
    • 80053595438 scopus 로고    scopus 로고
    • Evaluation of the waterproof ability of a hydrophobic nickel micromesh with array-type microholes
    • [20] Lee, S.M., Oh, D.J., Jung, I.D., Jung, P.G., Chung, K.H., Jang, W.I., Ko, J.S., Evaluation of the waterproof ability of a hydrophobic nickel micromesh with array-type microholes. J. Micromech. Microeng., 19, 2009, 125024.
    • (2009) J. Micromech. Microeng. , vol.19 , pp. 125024
    • Lee, S.M.1    Oh, D.J.2    Jung, I.D.3    Jung, P.G.4    Chung, K.H.5    Jang, W.I.6    Ko, J.S.7
  • 22
    • 84886620814 scopus 로고    scopus 로고
    • Optimal design of permeable fiber network structures for fog harvesting
    • [22] Park, K.-C., Chhatre, S.S., Srinivasan, S., Cohen, R.E., McKinley, G.H., Optimal design of permeable fiber network structures for fog harvesting. Langmuir 29 (2013), 13269–13277.
    • (2013) Langmuir , vol.29 , pp. 13269-13277
    • Park, K.-C.1    Chhatre, S.S.2    Srinivasan, S.3    Cohen, R.E.4    McKinley, G.H.5
  • 24
    • 77952678287 scopus 로고    scopus 로고
    • Design and fabrication of hydrophobic copper mesh with striking loading capacity and pressure resistance
    • [24] Jiang, Z.X., Geng, L., Huang, Y.D., Design and fabrication of hydrophobic copper mesh with striking loading capacity and pressure resistance. J. Phys. Chem. C 114 (2010), 9370–9378.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 9370-9378
    • Jiang, Z.X.1    Geng, L.2    Huang, Y.D.3
  • 25
    • 77956238862 scopus 로고    scopus 로고
    • Fabrication of superhydrophobic 3-D braided carbon fiber fabric boat
    • [25] Jiang, Z.X., Geng, L., Huang, Y.D., Fabrication of superhydrophobic 3-D braided carbon fiber fabric boat. Mater. Lett. 64 (2010), 2441–2443.
    • (2010) Mater. Lett. , vol.64 , pp. 2441-2443
    • Jiang, Z.X.1    Geng, L.2    Huang, Y.D.3
  • 26
    • 84862832923 scopus 로고    scopus 로고
    • Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes
    • [26] Pan, Q., Wang, M., Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. ACS Appl. Mater. Interfaces 1 (2009), 420–423.
    • (2009) ACS Appl. Mater. Interfaces , vol.1 , pp. 420-423
    • Pan, Q.1    Wang, M.2
  • 27
    • 78650711551 scopus 로고    scopus 로고
    • The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf
    • [27] Jiang, Z.X., Geng, L., Huang, Y.D., Guan, S.A., Dong, W., Ma, Z.Y., The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf. J. Colloid Interface Sci. 354 (2011), 866–872.
    • (2011) J. Colloid Interface Sci. , vol.354 , pp. 866-872
    • Jiang, Z.X.1    Geng, L.2    Huang, Y.D.3    Guan, S.A.4    Dong, W.5    Ma, Z.Y.6
  • 29
    • 84859534371 scopus 로고    scopus 로고
    • Effect of fiber orientation on shape and stability of air–water interface on submerged superhydrophobic electrospun thin coatings
    • [29] Emami, B., Tafreshi, H.V., Gad-el-Hak, M., Tepper, G.C., Effect of fiber orientation on shape and stability of air–water interface on submerged superhydrophobic electrospun thin coatings. J. Appl. Phys., 111, 2012, 064325.
    • (2012) J. Appl. Phys. , vol.111 , pp. 064325
    • Emami, B.1    Tafreshi, H.V.2    Gad-el-Hak, M.3    Tepper, G.C.4
  • 30
    • 84857737600 scopus 로고    scopus 로고
    • Resistance of nanofibrous superhydrophobic coatings to hydrostatic pressure: the role of microstructure
    • [30] Bucher, T.M., Emami, B., Tafreshi, H.V., Gad-el-Hak, M., Tepper, G.C., Resistance of nanofibrous superhydrophobic coatings to hydrostatic pressure: the role of microstructure. Phys. Fluids, 24, 2012, 022109.
    • (2012) Phys. Fluids , vol.24 , pp. 022109
    • Bucher, T.M.1    Emami, B.2    Tafreshi, H.V.3    Gad-el-Hak, M.4    Tepper, G.C.5
  • 31
    • 2942752467 scopus 로고    scopus 로고
    • Criteria for ultralyophobic surfaces
    • [31] Extrand, C.W., Criteria for ultralyophobic surfaces. Langmuir 20 (2004), 5013–5018.
    • (2004) Langmuir , vol.20 , pp. 5013-5018
    • Extrand, C.W.1
  • 32
    • 79960647083 scopus 로고    scopus 로고
    • Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressure
    • [32] Emami, B., Bucher, T.M., Tafreshi, H.V., Pestov, D., Gad-el-Hak, M., Tepper, G.C., Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressure. Colloids Surf. A 385 (2011), 95–103.
    • (2011) Colloids Surf. A , vol.385 , pp. 95-103
    • Emami, B.1    Bucher, T.M.2    Tafreshi, H.V.3    Pestov, D.4    Gad-el-Hak, M.5    Tepper, G.C.6
  • 33
    • 84856866951 scopus 로고    scopus 로고
    • Design parameters for a robust superhydrophobic electrospun nonwoven mat
    • [33] Rawal, A., Design parameters for a robust superhydrophobic electrospun nonwoven mat. Langmuir 28 (2012), 3285–3289.
    • (2012) Langmuir , vol.28 , pp. 3285-3289
    • Rawal, A.1
  • 34
    • 84909979558 scopus 로고    scopus 로고
    • Effects of hydrostatic pressure on wetted area of submerged superhydrophobic granular coatings. Part 1: mono-dispersed coatings
    • [34] Amrei, M.M., Tafreshi, H.V., Effects of hydrostatic pressure on wetted area of submerged superhydrophobic granular coatings. Part 1: mono-dispersed coatings. Colloids Surf. A, 465, 2015, 87.
    • (2015) Colloids Surf. A , vol.465 , pp. 87
    • Amrei, M.M.1    Tafreshi, H.V.2
  • 36
    • 3042931502 scopus 로고    scopus 로고
    • The surface evolver and the stability of liquid surfaces
    • [36] Brakke, K.A., The surface evolver and the stability of liquid surfaces. Philos. Trans. R. Soc. Lond. A 354 (1996), 2143–2157.
    • (1996) Philos. Trans. R. Soc. Lond. A , vol.354 , pp. 2143-2157
    • Brakke, K.A.1
  • 37
    • 4043104154 scopus 로고    scopus 로고
    • Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
    • Springer-Verlag New York
    • [37] deGennes, P.G., Brochard-Wyart, F., Quéré, D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. 2004, Springer-Verlag, New York.
    • (2004)
    • deGennes, P.G.1    Brochard-Wyart, F.2    Quéré, D.3
  • 38
    • 84939786267 scopus 로고    scopus 로고
    • Wetting resistance of heterogeneous superhydrophobic coatings with orthogonally layered fibers
    • [38] Bucher, T.M., Amrei, M.M., Tafreshi, H.V., Wetting resistance of heterogeneous superhydrophobic coatings with orthogonally layered fibers. Surf. Coat. Technol. 277 (2015), 117–127.
    • (2015) Surf. Coat. Technol. , vol.277 , pp. 117-127
    • Bucher, T.M.1    Amrei, M.M.2    Tafreshi, H.V.3
  • 39
    • 84883444171 scopus 로고    scopus 로고
    • Momentum and mass transport over a bubble mattress: the influence of interface geometry
    • [39] Haase, A.S., Karatay, E., Tsai, P.A., Lammertink, R.G.H., Momentum and mass transport over a bubble mattress: the influence of interface geometry. Soft Matter 9 (2013), 8949–8957.
    • (2013) Soft Matter , vol.9 , pp. 8949-8957
    • Haase, A.S.1    Karatay, E.2    Tsai, P.A.3    Lammertink, R.G.H.4
  • 40
    • 77955458444 scopus 로고    scopus 로고
    • Effects of channel scale on slip length of flow in micro/nanochannels
    • [40] Yang, X., Zheng, Z.C., Effects of channel scale on slip length of flow in micro/nanochannels. J. Fluids Eng. 132 (2010), 061201–061206.
    • (2010) J. Fluids Eng. , vol.132 , pp. 061201-061206
    • Yang, X.1    Zheng, Z.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.