메뉴 건너뛰기




Volumn 18, Issue 1, 2016, Pages 5-17

Reverse-topology membrane scission by the ESCRT proteins

Author keywords

[No Author keywords available]

Indexed keywords

ESCRT I PROTEIN; ESCRT II PROTEIN; ESCRT III PROTEIN; ESCRT PROTEIN; PROTEIN SERINE THREONINE KINASE; PROTEIN SERINE THREONINE KINASE VPS4; UBIQUITIN; UNCLASSIFIED DRUG; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; VPS4A PROTEIN, HUMAN;

EID: 84990203054     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.121     Document Type: Review
Times cited : (319)

References (110)
  • 1
    • 84883894715 scopus 로고    scopus 로고
    • Virus budding and the ESCRT pathway
    • Votteler, J. & Sundquist, W. I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232-241 (2013).
    • (2013) Cell Host Microbe , vol.14 , pp. 232-241
    • Votteler, J.1    Sundquist, W.I.2
  • 2
    • 79959211941 scopus 로고    scopus 로고
    • Host factors involved in retroviral budding and release
    • Martin-Serrano, J. & Neil, S. J. D. Host factors involved in retroviral budding and release. Nat. Rev. Microbiol. 9, 519-531 (2011).
    • (2011) Nat. Rev. Microbiol , vol.9 , pp. 519-531
    • Martin-Serrano, J.1    Neil, S.J.D.2
  • 3
    • 84960400233 scopus 로고    scopus 로고
    • The ESCRT machinery: New roles at new holes
    • Olmos, Y. & Carlton, J. G. The ESCRT machinery: new roles at new holes. Curr. Opin. Cell Biol. 38, 1-11 (2016).
    • (2016) Curr. Opin. Cell Biol , vol.38 , pp. 1-11
    • Olmos, Y.1    Carlton, J.G.2
  • 4
    • 84961678027 scopus 로고    scopus 로고
    • Novel ESCRT functions in cell biology: Spiraling out of control?
    • Campsteijn, C., Vietri, M. & Stenmark, H. Novel ESCRT functions in cell biology: spiraling out of control? Curr. Opin. Cell Biol. 41, 1-8 (2016).
    • (2016) Curr. Opin. Cell Biol , vol.41 , pp. 1-8
    • Campsteijn, C.1    Vietri, M.2    Stenmark, H.3
  • 5
    • 84942838662 scopus 로고    scopus 로고
    • ESCRTs are everywhere
    • Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398-2407 (2015).
    • (2015) EMBO J , vol.34 , pp. 2398-2407
    • Hurley, J.H.1
  • 6
    • 80052621127 scopus 로고    scopus 로고
    • How ubiquitin functions with ESCRTs
    • Shields, S. B. & Piper, R. C. How ubiquitin functions with ESCRTs. Traffic 12, 1307-1317 (2011).
    • (2011) Traffic , vol.12 , pp. 1307-1317
    • Shields, S.B.1    Piper, R.C.2
  • 7
    • 0035958546 scopus 로고    scopus 로고
    • Ubiquitindependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I
    • Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitindependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145-155 (2001).
    • (2001) Cell , vol.106 , pp. 145-155
    • Katzmann, D.J.1    Babst, M.2    Emr, S.D.3
  • 8
    • 34247634126 scopus 로고    scopus 로고
    • Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer
    • Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485-498 (2007).
    • (2007) Cell , vol.129 , pp. 485-498
    • Kostelansky, M.S.1
  • 9
    • 0036697166 scopus 로고    scopus 로고
    • Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body
    • Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283-289 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 283-289
    • Babst, M.1    Katzmann, D.J.2    Snyder, W.B.3    Wendland, B.4    Emr, S.D.5
  • 10
    • 4544255838 scopus 로고    scopus 로고
    • Structure of the ESCRT-II endosomal trafficking complex
    • Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221-225 (2004).
    • (2004) Nature , vol.431 , pp. 221-225
    • Hierro, A.1
  • 11
    • 5044245523 scopus 로고    scopus 로고
    • ESCRT-II an endosome-associated complex required for protein sorting: Crystal structure and interactions with ESCRT-III and membranes
    • Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: Crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559-569 (2004).
    • (2004) Dev. Cell , vol.7 , pp. 559-569
    • Teo, H.1    Perisic, O.2    Gonzalez, B.3    Williams, R.L.4
  • 12
    • 44449097226 scopus 로고    scopus 로고
    • Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex
    • Im, Y. J. & Hurley, J. H. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14, 902-913 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 902-913
    • Im, Y.J.1    Hurley, J.H.2
  • 13
    • 33646116786 scopus 로고    scopus 로고
    • Structural and functional organization of the ESCRT-I trafficking complex
    • Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113-126 (2006).
    • (2006) Cell , vol.125 , pp. 113-126
    • Kostelansky, M.S.1
  • 14
    • 33846517041 scopus 로고    scopus 로고
    • Structural insight into the ESCRT-I/-II link and its role in MVB trafficking
    • Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600-612 (2007).
    • (2007) EMBO J , vol.26 , pp. 600-612
    • Gill, D.J.1
  • 15
    • 84861083754 scopus 로고    scopus 로고
    • Solution structure of the ESCRT-I and -II supercomplex: Implications for membrane budding and scission
    • Boura, E. et al. Solution structure of the ESCRT-I and -II supercomplex: Implications for membrane budding and scission. Structure 20, 874-886 (2012).
    • (2012) Structure , vol.20 , pp. 874-886
    • Boura, E.1
  • 16
    • 77950863406 scopus 로고    scopus 로고
    • Molecular mechanism of multivesicular body biogenesis by ESCRT complexes
    • Wollert, T. & Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864-869 (2010).
    • (2010) Nature , vol.464 , pp. 864-869
    • Wollert, T.1    Hurley, J.H.2
  • 17
    • 84867644422 scopus 로고    scopus 로고
    • In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters
    • Carlson, L.-A. & Hurley, J. H. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc. Natl Acad. Sci. USA 109, 16928-16933 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16928-16933
    • Carlson, L.-A.1    Hurley, J.H.2
  • 18
    • 34948911522 scopus 로고    scopus 로고
    • Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis
    • Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215-4227 (2007).
    • (2007) EMBO J , vol.26 , pp. 4215-4227
    • Morita, E.1
  • 19
    • 79952640255 scopus 로고    scopus 로고
    • ESCRT-III protein requirements for HIV-1 budding
    • Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235-242 (2011).
    • (2011) Cell Host Microbe , vol.9 , pp. 235-242
    • Morita, E.1
  • 20
    • 84911406750 scopus 로고    scopus 로고
    • Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death
    • Goliand, I., Nachmias, D., Gershony, O. & Elia, N. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25, 3740-3748 (2014).
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3740-3748
    • Goliand, I.1    Nachmias, D.2    Gershony, O.3    Elia, N.4
  • 21
    • 84938942146 scopus 로고    scopus 로고
    • Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production
    • Meng, B., Ip, N. C. Y., Prestwood, L. J., Abbink, T. E. M. & Lever, A. M. L. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology 12, 72 (2015).
    • (2015) Retrovirology , vol.12 , pp. 72
    • Meng, B.1    Ip, N.C.Y.2    Prestwood, L.J.3    Abbink, T.E.M.4    Lever, A.M.L.5
  • 22
    • 84960335655 scopus 로고    scopus 로고
    • ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission
    • Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499-513 (2016).
    • (2016) J. Cell Biol , vol.212 , pp. 499-513
    • Christ, L.1
  • 23
    • 84969217666 scopus 로고    scopus 로고
    • ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis
    • Tang, S. et al. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife http://dx.doi.org/10.7554/eLife.15507 (2016).
    • (2016) ELife
    • Tang, S.1
  • 24
    • 84988547064 scopus 로고    scopus 로고
    • Structure of cellular ESCRT-III spirals and their relationship to HIV budding
    • Cashikar, A. G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife http://dx.doi.org/10.7554/eLife.02184 (2014).
    • (2014) ELife
    • Cashikar, A.G.1
  • 25
    • 84893724876 scopus 로고    scopus 로고
    • Electron tomography of HIV-1 infection in gut-associated lymphoid tissue
    • Ladinsky, M. S. et al. Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLoS Pathog. 10, e1003899 (2014).
    • (2014) PLoS Pathog , vol.10 , pp. e1003899
    • Ladinsky, M.S.1
  • 26
    • 84868097048 scopus 로고    scopus 로고
    • Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes
    • Rozycki, B., Boura, E., Hurley, J. H. & Hummer, G. Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes. PLoS Comput. Biol. 8, e1002736 (2012).
    • (2012) PLoS Comput. Biol , vol.8 , pp. e1002736
    • Rozycki, B.1    Boura, E.2    Hurley, J.H.3    Hummer, G.4
  • 27
    • 84923239956 scopus 로고    scopus 로고
    • Bud-neck scaffolding as a possible driving force in ESCRTinduced membrane budding
    • Mercker, M. & Marciniak-Czochra, A. Bud-neck scaffolding as a possible driving force in ESCRTinduced membrane budding. Biophys. J. 108, 833-843 (2015).
    • (2015) Biophys. J , vol.108 , pp. 833-843
    • Mercker, M.1    Marciniak-Czochra, A.2
  • 28
    • 77649335931 scopus 로고    scopus 로고
    • ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation
    • Teis, D., Saksena, S., Judson, B. L. & Emr, S. D. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29, 871-883 (2010).
    • (2010) EMBO J , vol.29 , pp. 871-883
    • Teis, D.1    Saksena, S.2    Judson, B.L.3    Emr, S.D.4
  • 29
    • 68449095867 scopus 로고    scopus 로고
    • Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis
    • Im, Y. J., Wollert, T., Boura, E. & Hurley, J. H. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev. Cell 17, 234-243 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 234-243
    • Im, Y.J.1    Wollert, T.2    Boura, E.3    Hurley, J.H.4
  • 30
    • 0141844660 scopus 로고    scopus 로고
    • AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding
    • Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689-699 (2003).
    • (2003) Cell , vol.114 , pp. 689-699
    • Strack, B.1    Calistri, A.2    Craig, S.3    Popova, E.4    Gottlinger, H.G.5
  • 31
    • 10744233294 scopus 로고    scopus 로고
    • The protein network of HIV budding
    • von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701-713 (2003).
    • (2003) Cell , vol.114 , pp. 701-713
    • Von Schwedler, U.K.1
  • 32
    • 19944375126 scopus 로고    scopus 로고
    • Structural basis for endosomal targeting by the Bro1 domain
    • Kim, J. et al. Structural basis for endosomal targeting by the Bro1 domain. Dev. Cell 8, 937-947 (2005).
    • (2005) Dev. Cell , vol.8 , pp. 937-947
    • Kim, J.1
  • 34
    • 33847355934 scopus 로고    scopus 로고
    • Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding
    • Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841-852 (2007).
    • (2007) Cell , vol.128 , pp. 841-852
    • Fisher, R.D.1
  • 35
    • 66749147856 scopus 로고    scopus 로고
    • A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments
    • Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843-856 (2009).
    • (2009) Structure , vol.17 , pp. 843-856
    • Pires, R.1
  • 37
    • 84870777012 scopus 로고    scopus 로고
    • ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding
    • Dowlatshahi, D. P. et al. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev. Cell 23, 1247-1254 (2012).
    • (2012) Dev. Cell , vol.23 , pp. 1247-1254
    • Dowlatshahi, D.P.1
  • 38
    • 84875213020 scopus 로고    scopus 로고
    • Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding
    • Keren-Kaplan, T. et al. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. EMBO J. 32, 538-551 (2013).
    • (2013) EMBO J , vol.32 , pp. 538-551
    • Keren-Kaplan, T.1
  • 39
    • 84878980535 scopus 로고    scopus 로고
    • The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes
    • Pashkova, N. et al. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev. Cell 25, 520-533 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 520-533
    • Pashkova, N.1
  • 40
    • 80052293740 scopus 로고    scopus 로고
    • Activation of the retroviral budding factor ALIX
    • Zhai, Q. T. et al. Activation of the retroviral budding factor ALIX. J. Virol. 85, 9222-9226 (2011).
    • (2011) J. Virol , vol.85 , pp. 9222-9226
    • Zhai, Q.T.1
  • 41
    • 84875279930 scopus 로고    scopus 로고
    • Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB
    • Ali, N. et al. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr. Biol. 23, 453-461 (2013).
    • (2013) Curr. Biol , vol.23 , pp. 453-461
    • Ali, N.1
  • 43
    • 84942420909 scopus 로고    scopus 로고
    • A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class i
    • Parkinson, M. D. J. et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem. J. 471, 79-88 (2015).
    • (2015) Biochem. J , vol.471 , pp. 79-88
    • Parkinson, M.D.J.1
  • 44
    • 33646863279 scopus 로고    scopus 로고
    • Structural basis for budding by the ESCRT-III factor CHMP3
    • Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821-830 (2006).
    • (2006) Dev. Cell , vol.10 , pp. 821-830
    • Muziol, T.1
  • 45
    • 84988603419 scopus 로고    scopus 로고
    • Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments
    • Tang, S. et al. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife http://dx.doi.org/10.7554/eLife.12548 (2015).
    • (2015) ELife
    • Tang, S.1
  • 46
    • 67650312119 scopus 로고    scopus 로고
    • Structural basis for ESCRT-III protein autoinhibition
    • Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16, 754-762 (2009).
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 754-762
    • Bajorek, M.1
  • 47
    • 68149094429 scopus 로고    scopus 로고
    • Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis
    • Xiao, J. Y. et al. Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20, 3514-3524 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3514-3524
    • Xiao, J.Y.1
  • 48
    • 84950271437 scopus 로고    scopus 로고
    • Structure and membrane remodeling activity of ESCRT-III helical polymers
    • McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548-1551 (2015).
    • (2015) Science , vol.350 , pp. 1548-1551
    • McCullough, J.1
  • 49
    • 34247396927 scopus 로고    scopus 로고
    • Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding
    • Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140-19145 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 19140-19145
    • Zamborlini, A.1
  • 50
    • 34447527768 scopus 로고    scopus 로고
    • Structure/ function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain
    • Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/ function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068-1079 (2007).
    • (2007) Traffic , vol.8 , pp. 1068-1079
    • Shim, S.1    Kimpler, L.A.2    Hanson, P.I.3
  • 51
    • 41949105167 scopus 로고    scopus 로고
    • Structural basis for autoinhibition of ESCRT-III CHMP3
    • Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818-827 (2008).
    • (2008) J. Mol. Biol , vol.378 , pp. 818-827
    • Lata, S.1
  • 52
    • 84867548612 scopus 로고    scopus 로고
    • The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices
    • Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356-371 (2012).
    • (2012) Cell , vol.151 , pp. 356-371
    • Henne, W.M.1    Buchkovich, N.J.2    Zhao, Y.3    Emr, S.D.4
  • 53
    • 78650948314 scopus 로고    scopus 로고
    • SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions
    • Rozycki, B., Kim, Y. C. & Hummer, G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19, 109-116 (2011).
    • (2011) Structure , vol.19 , pp. 109-116
    • Rozycki, B.1    Kim, Y.C.2    Hummer, G.3
  • 54
    • 84934974992 scopus 로고    scopus 로고
    • The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation
    • Schuh, A. L. et al. The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation. Biochem. J. 466, 625-637 (2015).
    • (2015) Biochem. J , vol.466 , pp. 625-637
    • Schuh, A.L.1
  • 55
    • 38749152820 scopus 로고    scopus 로고
    • Plasma membrane deformation by circular arrays of ESCRT-III protein filaments
    • Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389-402 (2008).
    • (2008) J. Cell Biol , vol.180 , pp. 389-402
    • Hanson, P.I.1    Roth, R.2    Lin, Y.3    Heuser, J.E.4
  • 56
    • 84907081816 scopus 로고    scopus 로고
    • Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly
    • Shen, Q.-T. et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206, 763-777 (2014).
    • (2014) J. Cell Biol , vol.206 , pp. 763-777
    • Shen, Q.-T.1
  • 57
    • 84946141973 scopus 로고    scopus 로고
    • Relaxation of loaded ESCRT-III spiral springs drives membrane deformation
    • Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866-879 (2015).
    • (2015) Cell , vol.163 , pp. 866-879
    • Chiaruttini, N.1
  • 58
    • 51149106799 scopus 로고    scopus 로고
    • Helical structures of ESCRT-III are disassembled by VPS4
    • Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354-1357 (2008).
    • (2008) Science , vol.321 , pp. 1354-1357
    • Lata, S.1
  • 59
    • 84872617312 scopus 로고    scopus 로고
    • ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding
    • Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15, 213-226 (2013).
    • (2013) Cell. Microbiol , vol.15 , pp. 213-226
    • Effantin, G.1
  • 60
    • 81155123699 scopus 로고    scopus 로고
    • Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane
    • Bodon, G. et al. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J. Biol. Chem. 286, 40276-40286 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 40276-40286
    • Bodon, G.1
  • 61
    • 84884216165 scopus 로고    scopus 로고
    • An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome
    • Allison, R. et al. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J. Cell Biol. 202, 527-543 (2013).
    • (2013) J. Cell Biol , vol.202 , pp. 527-543
    • Allison, R.1
  • 62
    • 84880883715 scopus 로고    scopus 로고
    • Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission
    • Dobro, M. J. et al. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol. Biol. Cell 24, 2319-2327 (2013).
    • (2013) Mol. Biol. Cell , vol.24 , pp. 2319-2327
    • Dobro, M.J.1
  • 63
    • 79953161074 scopus 로고    scopus 로고
    • Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments
    • Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616-1620 (2011).
    • (2011) Science , vol.331 , pp. 1616-1620
    • Guizetti, J.1
  • 64
    • 79953323443 scopus 로고    scopus 로고
    • Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component
    • Baumgartel, V. B. V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13, 469-474 (2011).
    • (2011) Nat. Cell Biol , vol.13 , pp. 469-474
    • Baumgartel, V.B.V.1
  • 65
    • 79953296191 scopus 로고    scopus 로고
    • Dynamics of ESCRT protein recruitment during retroviral assembly
    • Jouvenet, N. J. N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13, 394-401 (2011).
    • (2011) Nat. Cell Biol , vol.13 , pp. 394-401
    • Jouvenet, N.J.N.1    Zhadina, M.2    Bieniasz, P.D.3    Simon, S.M.4
  • 66
    • 34347385894 scopus 로고    scopus 로고
    • Parallels between cytokinesis and retroviral budding: A role for the ESCRT machinery
    • Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: A role for the ESCRT machinery. Science 316, 1908-1912 (2007).
    • (2007) Science , vol.316 , pp. 1908-1912
    • Carlton, J.G.1    Martin-Serrano, J.2
  • 67
    • 84882829097 scopus 로고    scopus 로고
    • Knowing when to cut and run: Mechanisms that control cytokinetic abscission
    • Agromayor, M. & Martin-Serrano, J. Knowing when to cut and run: Mechanisms that control cytokinetic abscission. Trends Cell Biol. 23, 433-441 (2013).
    • (2013) Trends Cell Biol , vol.23 , pp. 433-441
    • Agromayor, M.1    Martin-Serrano, J.2
  • 69
    • 84952690378 scopus 로고    scopus 로고
    • Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly
    • Lee, I. H., Kai, H., Carlson, L. A., Groves, J. T. & Hurley, J. H. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc. Natl Acad. Sci. USA 112, 15892-15897 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 15892-15897
    • Lee, I.H.1    Kai, H.2    Carlson, L.A.3    Groves, J.T.4    Hurley, J.H.5
  • 70
    • 53249131094 scopus 로고    scopus 로고
    • Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation
    • Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578-589 (2008).
    • (2008) Dev. Cell , vol.15 , pp. 578-589
    • Teis, D.1    Saksena, S.2    Emr, S.D.3
  • 71
    • 0032101334 scopus 로고    scopus 로고
    • The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function
    • Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982-2993 (1998).
    • (1998) EMBO J , vol.17 , pp. 2982-2993
    • Babst, M.1    Wendland, B.2    Estepa, E.J.3    Emr, S.D.4
  • 72
    • 84949649765 scopus 로고    scopus 로고
    • Meiotic clade AAA ATPases: Protein polymer disassembly machines
    • Monroe, N. & Hill, C. P. Meiotic clade AAA ATPases: protein polymer disassembly machines. J. Mol. Biol. 428, 1897-1911 (2016).
    • (2016) J. Mol. Biol , vol.428 , pp. 1897-1911
    • Monroe, N.1    Hill, C.P.2
  • 73
  • 74
    • 84892543174 scopus 로고    scopus 로고
    • The oligomeric state of the active Vps4 AAA ATPase
    • Monroe, N. et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426, 510-525 (2013).
    • (2013) J. Mol. Biol , vol.426 , pp. 510-525
    • Monroe, N.1
  • 75
    • 84949267291 scopus 로고    scopus 로고
    • Asymmetric ring structure of Vps4 required for ESCRT-III disassembly
    • Caillat, C. et al. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat. Commun. 6, 8781 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 8781
    • Caillat, C.1
  • 76
    • 35148831808 scopus 로고    scopus 로고
    • Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4
    • Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735-739 (2007).
    • (2007) Nature , vol.449 , pp. 735-739
    • Obita, T.1
  • 77
    • 35148900389 scopus 로고    scopus 로고
    • ESCRT-III recognition by VPS4 ATPases
    • Stuchell-Brereton, M. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740-744 (2007).
    • (2007) Nature , vol.449 , pp. 740-744
    • Stuchell-Brereton, M.1
  • 78
    • 84925729200 scopus 로고    scopus 로고
    • Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains
    • Guo, E. Z. & Xu, Z. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J. Biol. Chem. 290, 8396-8408 (2015).
    • (2015) J. Biol. Chem , vol.290 , pp. 8396-8408
    • Guo, E.Z.1    Xu, Z.2
  • 79
    • 46049099346 scopus 로고    scopus 로고
    • Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding
    • Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62-73 (2008).
    • (2008) Dev. Cell , vol.15 , pp. 62-73
    • Kieffer, C.1
  • 80
    • 46049118283 scopus 로고    scopus 로고
    • Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly
    • Shim, S., Merrill, S. A. & Hanson, P. I. Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19, 2661-2672 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2661-2672
    • Shim, S.1    Merrill, S.A.2    Hanson, P.I.3
  • 81
    • 37749011364 scopus 로고    scopus 로고
    • Structural basis of Vta1 function in the multi-vesicular body sorting pathway
    • Xiao, J. et al. Structural basis of Vta1 function in the multi-vesicular body sorting pathway. Dev. Cell 14, 37-49 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 37-49
    • Xiao, J.1
  • 82
    • 80051495469 scopus 로고    scopus 로고
    • Structural basis for ESCRT-III CHMP3 recruitment of AMSH
    • Solomons, J. et al. Structural basis for ESCRT-III CHMP3 recruitment of AMSH. Structure 19, 1149-1159 (2011).
    • (2011) Structure , vol.19 , pp. 1149-1159
    • Solomons, J.1
  • 83
    • 78149276258 scopus 로고    scopus 로고
    • Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition
    • Merrill, S. A. & Hanson, P.I. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition. J. Biol. Chem. 285 35428-35438 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 35428-35438
    • Merrill, S.A.1    Hanson, P.I.2
  • 84
    • 84883720423 scopus 로고    scopus 로고
    • Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element
    • Norgan, A. P. et al. Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J. Biol. Chem. 288, 26147-26156 (2013).
    • (2013) J. Biol. Chem , vol.288 , pp. 26147-26156
    • Norgan, A.P.1
  • 85
    • 84907835249 scopus 로고    scopus 로고
    • Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 7 and 9 to stimulate ATP hydrolysis
    • Davies, B. A. et al. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 7 and 9 to stimulate ATP hydrolysis. J. Biol. Chem. 289, 28707-28718 (2014).
    • (2014) J. Biol. Chem , vol.289 , pp. 28707-28718
    • Davies, B.A.1
  • 86
    • 84930004495 scopus 로고    scopus 로고
    • Binding of substrates to the central pore of the Vps4 ATPase is autoinhibited by the microtubule interacting and trafficking (MIT) domain and activated by MIT interacting motifs (MIMs)
    • Han, H. et al. Binding of substrates to the central pore of the Vps4 ATPase is autoinhibited by the microtubule interacting and trafficking (MIT) domain and activated by MIT interacting motifs (MIMs). J. Biol. Chem. 290, 13490-13499 (2015).
    • (2015) J. Biol. Chem , vol.290 , pp. 13490-13499
    • Han, H.1
  • 87
    • 27144444327 scopus 로고    scopus 로고
    • Structural and mechanistic studies of VPS4 proteins
    • Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658-3669 (2005).
    • (2005) EMBO J , vol.24 , pp. 3658-3669
    • Scott, A.1
  • 88
    • 56249119525 scopus 로고    scopus 로고
    • Biochemical and structural studies of yeast Vps4 oligomerization
    • Gonciarz, M. D. et al. Biochemical and structural studies of yeast Vps4 oligomerization. J. Mol. Biol. 384, 878-895 (2008).
    • (2008) J. Mol. Biol , vol.384 , pp. 878-895
    • Gonciarz, M.D.1
  • 89
    • 40049105414 scopus 로고    scopus 로고
    • Vacuolar protein sorting: Two different functional states of the AAA-ATPase Vps4p
    • Hartmann, C. et al. Vacuolar protein sorting: Two different functional states of the AAA-ATPase Vps4p. J. Mol. Biol. 377, 352-363 (2008).
    • (2008) J. Mol. Biol , vol.377 , pp. 352-363
    • Hartmann, C.1
  • 90
    • 40049101160 scopus 로고    scopus 로고
    • Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p
    • Yu, Z. H., Gonciarz, M. D., Sundquist, W. I., Hill, C. P. & Jensen, G. J. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J. Mol. Biol. 377, 364-377 (2008).
    • (2008) J. Mol. Biol , vol.377 , pp. 364-377
    • Yu, Z.H.1    Gonciarz, M.D.2    Sundquist, W.I.3    Hill, C.P.4    Jensen, G.J.5
  • 91
    • 61449203852 scopus 로고    scopus 로고
    • Three-dimensional structure of AAA ATPase Vps4: Advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding
    • Landsberg, M. J., Vajjhala, P. R., Rothnagel, R., Munn, A. L. & Hankamer, B. Three-dimensional structure of AAA ATPase Vps4: Advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure 17, 427-437 (2009).
    • (2009) Structure , vol.17 , pp. 427-437
    • Landsberg, M.J.1    Vajjhala, P.R.2    Rothnagel, R.3    Munn, A.L.4    Hankamer, B.5
  • 92
    • 84930413153 scopus 로고    scopus 로고
    • Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation
    • Yang, B., Stjepanovic, G., Shen, Q. T., Martin, A. & Hurley, J. H. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22, 492-498 (2015).
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 492-498
    • Yang, B.1    Stjepanovic, G.2    Shen, Q.T.3    Martin, A.4    Hurley, J.H.5
  • 93
    • 37749048772 scopus 로고    scopus 로고
    • ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1
    • Azmi, I. F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14, 50-61 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 50-61
    • Azmi, I.F.1
  • 94
    • 77955487325 scopus 로고    scopus 로고
    • Structural role of the Vps4-Vta1 interface in ESCRT-III recycling
    • Yang, D. & Hurley, J. H. Structural role of the Vps4-Vta1 interface in ESCRT-III recycling. Structure 18, 976-984 (2010).
    • (2010) Structure , vol.18 , pp. 976-984
    • Yang, D.1    Hurley, J.H.2
  • 95
    • 73449092185 scopus 로고    scopus 로고
    • Computational model of membrane fission catalyzed by ESCRT-III
    • Fabrikant, G. et al. Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009).
    • (2009) PLoS Comput. Biol , vol.5 , pp. e1000575
    • Fabrikant, G.1
  • 97
    • 84893719820 scopus 로고    scopus 로고
    • Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits
    • Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653-656 (2014).
    • (2014) Science , vol.343 , pp. 653-656
    • Van Engelenburg, S.B.1
  • 98
    • 84924352677 scopus 로고    scopus 로고
    • Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites
    • Prescher, J. et al. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog. 11, e1004677 (2015).
    • (2015) PLoS Pathog , vol.11 , pp. e1004677
    • Prescher, J.1
  • 100
    • 77954957013 scopus 로고    scopus 로고
    • Membrane budding and scission by the ESCRT machinery: Its all in the neck
    • Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: its all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556-566 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 556-566
    • Hurley, J.H.1    Hanson, P.I.2
  • 101
    • 84878951746 scopus 로고    scopus 로고
    • Membrane fission reactions of the mammalian ESCRT pathway
    • McCullough, J., Colf, L. A. & Sundquist, W. I. Membrane fission reactions of the mammalian ESCRT pathway. Annu. Rev. Biochem. 82, 663-692 (2013).
    • (2013) Annu. Rev. Biochem , vol.82 , pp. 663-692
    • McCullough, J.1    Colf, L.A.2    Sundquist, W.I.3
  • 102
    • 68649084955 scopus 로고    scopus 로고
    • Membrane buckling induced by curved filaments
    • Lenz, M., Crow, D. J. G. & Joanny, J. F. Membrane buckling induced by curved filaments. Phys. Rev. Lett. 103, 038101 (2009).
    • (2009) Phys. Rev. Lett , vol.103 , pp. 038101
    • Lenz, M.1    Crow, D.J.G.2    Joanny, J.F.3
  • 104
    • 0029872276 scopus 로고    scopus 로고
    • Coat proteins and vesicle budding
    • Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526-1533 (1996).
    • (1996) Science , vol.271 , pp. 1526-1533
    • Schekman, R.1    Orci, L.2
  • 105
    • 0842324801 scopus 로고    scopus 로고
    • The mechanisms of vesicle budding and fusion
    • Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153-166 (2004).
    • (2004) Cell , vol.116 , pp. 153-166
    • Bonifacino, J.S.1    Glick, B.S.2
  • 106
    • 34447109926 scopus 로고    scopus 로고
    • A concentric circle model of multivesicular body cargo sorting
    • Nickerson, D. P., Russell, D. W. & Odorizzi, G. A concentric circle model of multivesicular body cargo sorting. EMBO Rep. 8, 644-650 (2007).
    • (2007) EMBO Rep , vol.8 , pp. 644-650
    • Nickerson, D.P.1    Russell, D.W.2    Odorizzi, G.3
  • 107
    • 84940989514 scopus 로고    scopus 로고
    • Membrane manipulations by the ESCRT machinery
    • Odorizzi, G. Membrane manipulations by the ESCRT machinery. F1000Res. 4, 516 (2015).
    • (2015) F1000Res , vol.4 , pp. 516
    • Odorizzi, G.1
  • 108
    • 84930946081 scopus 로고    scopus 로고
    • Spastin and ESCRT-III coordinates mitotic spindle disassembly and nuclear envelope resealing
    • Vietri, M. et al. Spastin and ESCRT-III coordinates mitotic spindle disassembly and nuclear envelope resealing. Nature 522, 231-235 (2015).
    • (2015) Nature , vol.522 , pp. 231-235
    • Vietri, M.1
  • 109
    • 37849024338 scopus 로고    scopus 로고
    • Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV
    • Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43-49 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 43-49
    • Zhai, Q.1
  • 110
    • 84957818381 scopus 로고    scopus 로고
    • Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7
    • Bauer, I., Brune, T., Preiss, R. & Kolling, R. Evidence for a nonendosomal function of the Saccharomyces cerevisiae ESCRT-III-like protein Chm7. Genetics 201, 1439-1452 (2015).
    • (2015) Genetics , vol.201 , pp. 1439-1452
    • Bauer, I.1    Brune, T.2    Preiss, R.3    Kolling, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.