-
1
-
-
84978913253
-
Bigchem: Challenges and opportunities for big data analysis in chemistry
-
Epub ahead of print
-
Tetko IV, Engkvist O, Koch U, Reymond JL, Chen H. BIGCHEM: challenges and opportunities for Big Data analysis in chemistry. Mol. Inform. doi: 10.1002/.minf.201600073 (2016) (Epub ahead of print
-
(2016)
Mol. Inform
-
-
Tetko, I.V.1
Engkvist, O.2
Koch, U.3
Reymond, J.L.4
Chen, H.5
-
2
-
-
82255175505
-
Making every sar point count: The development of chemistry connect for the large-scale integration of structure and bioactivity data
-
Muresan S, Petrov P, Southan C, et al. Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discov. Today 16(23-24), 1019-1030 (2011
-
(2011)
Drug Discov. Today
, vol.16
, Issue.23-24
, pp. 1019-1030
-
-
Muresan, S.1
Petrov, P.2
Southan, C.3
-
3
-
-
84958985233
-
Design issues of big data parallelisms
-
Mondal K. Design issues of Big Data parallelisms. Adv. Intell. Syst. Comput. 434, 209-217 (2016
-
(2016)
Adv. Intell. Syst. Comput
, vol.434
, pp. 209-217
-
-
Mondal, K.1
-
6
-
-
84990240181
-
-
How Amazon Works
-
How Amazon Works. http://money.howstuffworks.com/amazon1.htm
-
-
-
-
7
-
-
84944903634
-
Target prediction utilising negative bioactivity data covering large chemical space
-
Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A. Target prediction utilising negative bioactivity data covering large chemical space. J. Cheminform. 7, 51 (2015
-
(2015)
J. Cheminform
, vol.7
, pp. 51
-
-
Mervin, L.H.1
Afzal, A.M.2
Drakakis, G.3
Lewis, R.4
Engkvist, O.5
Bender, A.6
-
8
-
-
84919628756
-
How accurately can we predict the melting points of drug-like compounds?
-
Tetko IV, Sushko Y, Novotarskyi S, et al. How accurately can we predict the melting points of drug-like compounds? J. Chem. Inf. Model. 54(12), 3320-3329 (2014
-
(2014)
J Chem. Inf. Model
, vol.54
, Issue.12
, pp. 3320-3329
-
-
Tetko, I.V.1
Sushko, Y.2
Novotarskyi, S.3
-
9
-
-
84960397109
-
The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS
-
Tetko IV, Lowe D, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J. Cheminform. 8, 2 (2016
-
(2016)
J. Cheminform
, vol.8
, pp. 2
-
-
Tetko, I.V.1
Lowe, D.2
Williams, A.J.3
-
10
-
-
80051551297
-
Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information
-
Sushko I, Novotarskyi S, Korner R, et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided. Mol. Des. 25(6), 533-554 (2011
-
(2011)
J. Comput. Aided. Mol. des
, vol.25
, Issue.6
, pp. 533-554
-
-
Sushko, I.1
Novotarskyi, S.2
Korner, R.3
-
12
-
-
0041698448
-
Molecular descriptors influencing melting point and their role in classification of solid drugs
-
Bergstrom CA, Norinder U, Luthman K, Artursson p. Molecular descriptors influencing melting point and their role in classification of solid drugs. J. Chem. Inf. Comput. Sci. 43(4), 1177-1185 (2003
-
(2003)
J. Chem. Inf. Comput. Sci
, vol.43
, Issue.4
, pp. 1177-1185
-
-
Bergstrom, C.A.1
Norinder, U.2
Luthman, K.3
Artursson, P.4
-
13
-
-
0035263415
-
Prediction of drug solubility by the general solubility equation (GSE
-
Ran Y, Yalkowsky SH. Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 41(2), 354-357 (2001
-
(2001)
J. Chem. Inf. Comput. Sci
, vol.41
, Issue.2
, pp. 354-357
-
-
Ran, Y.1
Yalkowsky, S.H.2
-
14
-
-
33645466603
-
In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions
-
Balakin KV, Savchuk NP, Tetko IV. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr. Med. Chem. 13(2), 223-241 (2006
-
(2006)
Curr. Med. Chem
, vol.13
, Issue.2
, pp. 223-241
-
-
Balakin, K.V.1
Savchuk, N.P.2
Tetko, I.V.3
-
15
-
-
61949280507
-
Inductive transfer of knowledge: Application of multi-Task learning and feature net approaches to model tissue-Air partition coefficients
-
Varnek A, Gaudin C, Marcou G, Baskin I, Pandey AK, Tetko IV. Inductive transfer of knowledge: application of multi-Task learning and feature net approaches to model tissue-Air partition coefficients. J. Chem. Inf. Model. 49(1), 133-144 (2009
-
(2009)
J. Chem. Inf. Model
, vol.49
, Issue.1
, pp. 133-144
-
-
Varnek, A.1
Gaudin, C.2
Marcou, G.3
Baskin, I.4
Pandey, A.K.5
Tetko, I.V.6
-
16
-
-
84927735077
-
Massively multitask networks for drug discovery
-
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. Massively multitask networks for drug discovery. ArXiv e-prints 1502.02072 (2015
-
(2015)
ArXiv E-prints
, vol.1502
, pp. 02072
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
17
-
-
84978792062
-
A renaissance of neural networks in drug discovery
-
Baskin I, Winkler D, Tetko IV. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 11(8), 785-795 (2016
-
(2016)
Expert Opin. Drug Discov
, vol.11
, Issue.8
, pp. 785-795
-
-
Baskin, I.1
Winkler, D.2
Tetko, I.V.3
-
18
-
-
84954372459
-
Deep learning in drug discovery
-
Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol. Inf. 35(1), 3-14 (2016
-
(2016)
Mol. Inf
, vol.35
, Issue.1
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
21
-
-
84987943069
-
DeepTox: Toxicity prediction using deep learning
-
Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016
-
(2016)
Front. Environ. Sci
, vol.3
, pp. 80
-
-
Mayr, A.1
Klambauer, G.2
Unterthiner, T.3
Hochreiter, S.4
-
22
-
-
58149402899
-
Associative neural network
-
Tetko IV. Associative neural network. Methods Mol. Biol. 458, 185-202 (2008
-
(2008)
Methods Mol. Biol
, vol.458
, pp. 185-202
-
-
Tetko, I.V.1
-
23
-
-
85063821675
-
Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
-
Abdelaziz A, Spahn-Langguth H, Werner-Schramm K, Tetko IV. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front. Environ. Sci. 4, 2 (2016
-
(2016)
Front. Environ. Sci
, vol.4
, pp. 2
-
-
Abdelaziz, A.1
Spahn-Langguth, H.2
Werner-Schramm, K.3
Tetko, I.V.4
-
24
-
-
84969816544
-
ToxCast EPA in vitro to in vivo challenge: Insight into the rank-i model
-
Novotarskyi S, Abdelaziz A, Sushko Y, Korner R, Vogt J, Tetko IV. ToxCast EPA in vitro to in vivo challenge: insight into the rank-i model. Chem. Res. Toxicol. 29(5), 768-775 (2016
-
(2016)
Chem. Res. Toxicol
, vol.29
, Issue.5
, pp. 768-775
-
-
Novotarskyi, S.1
Abdelaziz, A.2
Sushko, Y.3
Korner, R.4
Vogt, J.5
Tetko, I.V.6
-
25
-
-
84990177381
-
Macau: Scalable Bayesian multi-relational factorization with side information using MCMC
-
Simm J, Arany A, Zakeri P, et al. Macau: scalable bayesian multi-relational factorization with side information using MCMC. ArXiv e-prints 1509.04610 (2015). https://arxiv.org/abs/1509.04610
-
(2015)
ArXiv E-prints 1509.04610
-
-
Simm, J.1
Arany, A.2
Zakeri, P.3
-
26
-
-
84976293888
-
Computational intelligence modeling of the macromolecules release from PLGA microspheres - Focus on feature selection
-
Zawbaa HM, Szlek J, Grosan C, Jachowicz R, Mendyk A. Computational intelligence modeling of the macromolecules release from PLGA microspheres - focus on feature selection. PLoS ONE 11(6), e0157610 (2016
-
(2016)
PLoS ONE
, vol.11
, Issue.6
, pp. e0157610
-
-
Zawbaa, H.M.1
Szlek, J.2
Grosan, C.3
Jachowicz, R.4
Mendyk, A.5
-
27
-
-
84990217302
-
Highly scalable tensor factorization for prediction of drug-protein interaction type
-
Arany A, Simm J, Zakeri P, et al. Highly scalable tensor factorization for prediction of drug-protein interaction type. ArXiv e-prints 1512.00315 (2015). https://arxiv.org/pdf/1512.00315.pdf
-
(2015)
ArXiv E-prints 1512.00315
-
-
Arany, A.1
Simm, J.2
Zakeri, P.3
-
30
-
-
44649190610
-
Calculation of lipophilicity for Pt(II) complexes: Experimental comparison of several methods
-
Tetko IV, Jaroszewicz I, Platts JA, Kuduk-Jaworska J. Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods. J. Inorg. Biochem. 102(7), 1424-1437 (2008
-
(2008)
J. Inorg. Biochem
, vol.102
, Issue.7
, pp. 1424-1437
-
-
Tetko, I.V.1
Jaroszewicz, I.2
Platts, J.A.3
Kuduk-Jaworska, J.4
-
31
-
-
84869987352
-
Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
-
Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864-2875 (2012
-
(2012)
J. Chem. Inf. Model
, vol.52
, Issue.11
, pp. 2864-2875
-
-
Ruddigkeit, L.1
Van Deursen, R.2
Blum, L.C.3
Reymond, J.L.4
-
32
-
-
33745821727
-
Can we estimate the accuracy of ADME-Tox predictions?
-
Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today 11(15-16), 700-707 (2006
-
(2006)
Drug Discov Today
, vol.11
, Issue.15-16
, pp. 700-707
-
-
Tetko, I.V.1
Bruneau, P.2
Mewes, H.W.3
Rohrer, D.C.4
Poda, G.I.5
-
33
-
-
84903288879
-
Introducing conformal prediction in predictive modeling A transparent and flexible alternative to applicability domain determination
-
Norinder U, Carlsson L, Boyer S, Eklund M. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J. Chem. Inf. Model. 54(6), 1596-1603 (2014
-
(2014)
J. Chem. Inf. Model
, vol.54
, Issue.6
, pp. 1596-1603
-
-
Norinder, U.1
Carlsson, L.2
Boyer, S.3
Eklund, M.4
-
34
-
-
84864256835
-
Automated recycling of chemistry for virtual screening and library design
-
Vainio MJ, Kogej T, Raubacher F. Automated recycling of chemistry for virtual screening and library design. J. Chem. Inf. Model. 52(7), 1777-1786 (2012
-
(2012)
J. Chem. Inf. Model
, vol.52
, Issue.7
, pp. 1777-1786
-
-
Vainio, M.J.1
Kogej, T.2
Raubacher, F.3
-
35
-
-
65249124650
-
Searching fragment spaces with feature trees
-
Lessel U, Wellenzohn B, Lilienthal M, Claussen H. Searching fragment spaces with feature trees. J. Chem. Inf. Model. 49(2), 270-279 (2009
-
(2009)
J. Chem. Inf. Model
, vol.49
, Issue.2
, pp. 270-279
-
-
Lessel, U.1
Wellenzohn, B.2
Lilienthal, M.3
Claussen, H.4
-
36
-
-
84871647116
-
Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry
-
Wellenzohn B, Lessel U, Beller A, Isambert T, Hoenke C, Nosse B. Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. J. Med. Chem. 55(24), 11031-11041 (2012
-
(2012)
J. Med. Chem
, vol.55
, Issue.24
, pp. 11031-11041
-
-
Wellenzohn, B.1
Lessel, U.2
Beller, A.3
Isambert, T.4
Hoenke, C.5
Nosse, B.6
-
37
-
-
84879194771
-
Very large virtual compound spaces: Construction, storage and utility in drug discovery
-
Peng Z. Very large virtual compound spaces: construction, storage and utility in drug discovery. Drug Discov. Today Technol. 10(3), e387-394 (2013
-
(2013)
Drug Discov. Today Technol
, vol.10
, Issue.3
, pp. e387-e394
-
-
Peng, Z.1
-
38
-
-
79952197815
-
PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds
-
Peng Z, Yang B, Mattaparti S, et al. PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds. Methods Mol. Biol. 685 295-320 (2011
-
(2011)
Methods Mol. Biol
, vol.685
, pp. 295-320
-
-
Peng, Z.1
Yang, B.2
Mattaparti, S.3
-
39
-
-
35848942839
-
Structure-based design and synthesis of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2, 4-diols as novel and potent human CHK1 inhibitors
-
Teng M, Zhu J, Johnson MD, et al. Structure-based design and synthesis of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2, 4-diols as novel and potent human CHK1 inhibitors. J. Med. Chem. 50(22), 5253-5256 (2007
-
(2007)
J. Med. Chem
, vol.50
, Issue.22
, pp. 5253-5256
-
-
Teng, M.1
Zhu, J.2
Johnson, M.D.3
-
40
-
-
84979643825
-
The proximal lilly collection: Mapping, exploring and exploiting feasible chemical space
-
Nicolaou CA, Watson IA, Hu H, Wang J. The proximal lilly collection: mapping, exploring and exploiting feasible chemical space. J. Chem. Inf. Model. 56(7), 1253-1266 (2016
-
(2016)
J. Chem. Inf. Model
, vol.56
, Issue.7
, pp. 1253-1266
-
-
Nicolaou, C.A.1
Watson, I.A.2
Hu, H.3
Wang, J.4
-
41
-
-
84990221448
-
-
BigChem. http://bigchem.eu
-
BigChem
-
-
|