메뉴 건너뛰기




Volumn 8, Issue 15, 2016, Pages 1801-1806

Does 'Big Data' exist in medicinal chemistry, and if so, how can it be harnessed?

Author keywords

applicability domain; Big Data; chemoinformatics; education in chemistry and informatics; local and global models; multitask learning; neural networks; virtual chemical spaces

Indexed keywords

WATER;

EID: 84990174113     PISSN: 17568919     EISSN: 17568927     Source Type: Journal    
DOI: 10.4155/fmc-2016-0163     Document Type: Review
Times cited : (23)

References (41)
  • 1
    • 84978913253 scopus 로고    scopus 로고
    • Bigchem: Challenges and opportunities for big data analysis in chemistry
    • Epub ahead of print
    • Tetko IV, Engkvist O, Koch U, Reymond JL, Chen H. BIGCHEM: challenges and opportunities for Big Data analysis in chemistry. Mol. Inform. doi: 10.1002/.minf.201600073 (2016) (Epub ahead of print
    • (2016) Mol. Inform
    • Tetko, I.V.1    Engkvist, O.2    Koch, U.3    Reymond, J.L.4    Chen, H.5
  • 2
    • 82255175505 scopus 로고    scopus 로고
    • Making every sar point count: The development of chemistry connect for the large-scale integration of structure and bioactivity data
    • Muresan S, Petrov P, Southan C, et al. Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discov. Today 16(23-24), 1019-1030 (2011
    • (2011) Drug Discov. Today , vol.16 , Issue.23-24 , pp. 1019-1030
    • Muresan, S.1    Petrov, P.2    Southan, C.3
  • 3
    • 84958985233 scopus 로고    scopus 로고
    • Design issues of big data parallelisms
    • Mondal K. Design issues of Big Data parallelisms. Adv. Intell. Syst. Comput. 434, 209-217 (2016
    • (2016) Adv. Intell. Syst. Comput , vol.434 , pp. 209-217
    • Mondal, K.1
  • 6
    • 84990240181 scopus 로고    scopus 로고
    • How Amazon Works
    • How Amazon Works. http://money.howstuffworks.com/amazon1.htm
  • 8
    • 84919628756 scopus 로고    scopus 로고
    • How accurately can we predict the melting points of drug-like compounds?
    • Tetko IV, Sushko Y, Novotarskyi S, et al. How accurately can we predict the melting points of drug-like compounds? J. Chem. Inf. Model. 54(12), 3320-3329 (2014
    • (2014) J Chem. Inf. Model , vol.54 , Issue.12 , pp. 3320-3329
    • Tetko, I.V.1    Sushko, Y.2    Novotarskyi, S.3
  • 9
    • 84960397109 scopus 로고    scopus 로고
    • The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS
    • Tetko IV, Lowe D, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J. Cheminform. 8, 2 (2016
    • (2016) J. Cheminform , vol.8 , pp. 2
    • Tetko, I.V.1    Lowe, D.2    Williams, A.J.3
  • 10
    • 80051551297 scopus 로고    scopus 로고
    • Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information
    • Sushko I, Novotarskyi S, Korner R, et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided. Mol. Des. 25(6), 533-554 (2011
    • (2011) J. Comput. Aided. Mol. des , vol.25 , Issue.6 , pp. 533-554
    • Sushko, I.1    Novotarskyi, S.2    Korner, R.3
  • 12
    • 0041698448 scopus 로고    scopus 로고
    • Molecular descriptors influencing melting point and their role in classification of solid drugs
    • Bergstrom CA, Norinder U, Luthman K, Artursson p. Molecular descriptors influencing melting point and their role in classification of solid drugs. J. Chem. Inf. Comput. Sci. 43(4), 1177-1185 (2003
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , Issue.4 , pp. 1177-1185
    • Bergstrom, C.A.1    Norinder, U.2    Luthman, K.3    Artursson, P.4
  • 13
    • 0035263415 scopus 로고    scopus 로고
    • Prediction of drug solubility by the general solubility equation (GSE
    • Ran Y, Yalkowsky SH. Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 41(2), 354-357 (2001
    • (2001) J. Chem. Inf. Comput. Sci , vol.41 , Issue.2 , pp. 354-357
    • Ran, Y.1    Yalkowsky, S.H.2
  • 14
    • 33645466603 scopus 로고    scopus 로고
    • In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions
    • Balakin KV, Savchuk NP, Tetko IV. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr. Med. Chem. 13(2), 223-241 (2006
    • (2006) Curr. Med. Chem , vol.13 , Issue.2 , pp. 223-241
    • Balakin, K.V.1    Savchuk, N.P.2    Tetko, I.V.3
  • 15
    • 61949280507 scopus 로고    scopus 로고
    • Inductive transfer of knowledge: Application of multi-Task learning and feature net approaches to model tissue-Air partition coefficients
    • Varnek A, Gaudin C, Marcou G, Baskin I, Pandey AK, Tetko IV. Inductive transfer of knowledge: application of multi-Task learning and feature net approaches to model tissue-Air partition coefficients. J. Chem. Inf. Model. 49(1), 133-144 (2009
    • (2009) J. Chem. Inf. Model , vol.49 , Issue.1 , pp. 133-144
    • Varnek, A.1    Gaudin, C.2    Marcou, G.3    Baskin, I.4    Pandey, A.K.5    Tetko, I.V.6
  • 17
    • 84978792062 scopus 로고    scopus 로고
    • A renaissance of neural networks in drug discovery
    • Baskin I, Winkler D, Tetko IV. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 11(8), 785-795 (2016
    • (2016) Expert Opin. Drug Discov , vol.11 , Issue.8 , pp. 785-795
    • Baskin, I.1    Winkler, D.2    Tetko, I.V.3
  • 18
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol. Inf. 35(1), 3-14 (2016
    • (2016) Mol. Inf , vol.35 , Issue.1 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 22
    • 58149402899 scopus 로고    scopus 로고
    • Associative neural network
    • Tetko IV. Associative neural network. Methods Mol. Biol. 458, 185-202 (2008
    • (2008) Methods Mol. Biol , vol.458 , pp. 185-202
    • Tetko, I.V.1
  • 23
    • 85063821675 scopus 로고    scopus 로고
    • Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
    • Abdelaziz A, Spahn-Langguth H, Werner-Schramm K, Tetko IV. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front. Environ. Sci. 4, 2 (2016
    • (2016) Front. Environ. Sci , vol.4 , pp. 2
    • Abdelaziz, A.1    Spahn-Langguth, H.2    Werner-Schramm, K.3    Tetko, I.V.4
  • 25
    • 84990177381 scopus 로고    scopus 로고
    • Macau: Scalable Bayesian multi-relational factorization with side information using MCMC
    • Simm J, Arany A, Zakeri P, et al. Macau: scalable bayesian multi-relational factorization with side information using MCMC. ArXiv e-prints 1509.04610 (2015). https://arxiv.org/abs/1509.04610
    • (2015) ArXiv E-prints 1509.04610
    • Simm, J.1    Arany, A.2    Zakeri, P.3
  • 26
    • 84976293888 scopus 로고    scopus 로고
    • Computational intelligence modeling of the macromolecules release from PLGA microspheres - Focus on feature selection
    • Zawbaa HM, Szlek J, Grosan C, Jachowicz R, Mendyk A. Computational intelligence modeling of the macromolecules release from PLGA microspheres - focus on feature selection. PLoS ONE 11(6), e0157610 (2016
    • (2016) PLoS ONE , vol.11 , Issue.6 , pp. e0157610
    • Zawbaa, H.M.1    Szlek, J.2    Grosan, C.3    Jachowicz, R.4    Mendyk, A.5
  • 27
    • 84990217302 scopus 로고    scopus 로고
    • Highly scalable tensor factorization for prediction of drug-protein interaction type
    • Arany A, Simm J, Zakeri P, et al. Highly scalable tensor factorization for prediction of drug-protein interaction type. ArXiv e-prints 1512.00315 (2015). https://arxiv.org/pdf/1512.00315.pdf
    • (2015) ArXiv E-prints 1512.00315
    • Arany, A.1    Simm, J.2    Zakeri, P.3
  • 30
    • 44649190610 scopus 로고    scopus 로고
    • Calculation of lipophilicity for Pt(II) complexes: Experimental comparison of several methods
    • Tetko IV, Jaroszewicz I, Platts JA, Kuduk-Jaworska J. Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods. J. Inorg. Biochem. 102(7), 1424-1437 (2008
    • (2008) J. Inorg. Biochem , vol.102 , Issue.7 , pp. 1424-1437
    • Tetko, I.V.1    Jaroszewicz, I.2    Platts, J.A.3    Kuduk-Jaworska, J.4
  • 31
    • 84869987352 scopus 로고    scopus 로고
    • Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
    • Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864-2875 (2012
    • (2012) J. Chem. Inf. Model , vol.52 , Issue.11 , pp. 2864-2875
    • Ruddigkeit, L.1    Van Deursen, R.2    Blum, L.C.3    Reymond, J.L.4
  • 33
    • 84903288879 scopus 로고    scopus 로고
    • Introducing conformal prediction in predictive modeling A transparent and flexible alternative to applicability domain determination
    • Norinder U, Carlsson L, Boyer S, Eklund M. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J. Chem. Inf. Model. 54(6), 1596-1603 (2014
    • (2014) J. Chem. Inf. Model , vol.54 , Issue.6 , pp. 1596-1603
    • Norinder, U.1    Carlsson, L.2    Boyer, S.3    Eklund, M.4
  • 34
    • 84864256835 scopus 로고    scopus 로고
    • Automated recycling of chemistry for virtual screening and library design
    • Vainio MJ, Kogej T, Raubacher F. Automated recycling of chemistry for virtual screening and library design. J. Chem. Inf. Model. 52(7), 1777-1786 (2012
    • (2012) J. Chem. Inf. Model , vol.52 , Issue.7 , pp. 1777-1786
    • Vainio, M.J.1    Kogej, T.2    Raubacher, F.3
  • 36
    • 84871647116 scopus 로고    scopus 로고
    • Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry
    • Wellenzohn B, Lessel U, Beller A, Isambert T, Hoenke C, Nosse B. Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. J. Med. Chem. 55(24), 11031-11041 (2012
    • (2012) J. Med. Chem , vol.55 , Issue.24 , pp. 11031-11041
    • Wellenzohn, B.1    Lessel, U.2    Beller, A.3    Isambert, T.4    Hoenke, C.5    Nosse, B.6
  • 37
    • 84879194771 scopus 로고    scopus 로고
    • Very large virtual compound spaces: Construction, storage and utility in drug discovery
    • Peng Z. Very large virtual compound spaces: construction, storage and utility in drug discovery. Drug Discov. Today Technol. 10(3), e387-394 (2013
    • (2013) Drug Discov. Today Technol , vol.10 , Issue.3 , pp. e387-e394
    • Peng, Z.1
  • 38
    • 79952197815 scopus 로고    scopus 로고
    • PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds
    • Peng Z, Yang B, Mattaparti S, et al. PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds. Methods Mol. Biol. 685 295-320 (2011
    • (2011) Methods Mol. Biol , vol.685 , pp. 295-320
    • Peng, Z.1    Yang, B.2    Mattaparti, S.3
  • 39
    • 35848942839 scopus 로고    scopus 로고
    • Structure-based design and synthesis of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2, 4-diols as novel and potent human CHK1 inhibitors
    • Teng M, Zhu J, Johnson MD, et al. Structure-based design and synthesis of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2, 4-diols as novel and potent human CHK1 inhibitors. J. Med. Chem. 50(22), 5253-5256 (2007
    • (2007) J. Med. Chem , vol.50 , Issue.22 , pp. 5253-5256
    • Teng, M.1    Zhu, J.2    Johnson, M.D.3
  • 40
    • 84979643825 scopus 로고    scopus 로고
    • The proximal lilly collection: Mapping, exploring and exploiting feasible chemical space
    • Nicolaou CA, Watson IA, Hu H, Wang J. The proximal lilly collection: mapping, exploring and exploiting feasible chemical space. J. Chem. Inf. Model. 56(7), 1253-1266 (2016
    • (2016) J. Chem. Inf. Model , vol.56 , Issue.7 , pp. 1253-1266
    • Nicolaou, C.A.1    Watson, I.A.2    Hu, H.3    Wang, J.4
  • 41
    • 84990221448 scopus 로고    scopus 로고
    • BigChem. http://bigchem.eu
    • BigChem


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.