-
1
-
-
76749114901
-
Advances of Cancer Therapy by Nanotechnology
-
X. Wang, Y. Wang, Z. G. Chen, and D. M. Shin, “Advances of Cancer Therapy by Nanotechnology,” Cancer Res. Treat. 41(1), 1–11 (2009).
-
(2009)
Cancer Res. Treat
, vol.41
, Issue.1
, pp. 1-11
-
-
Wang, X.1
Wang, Y.2
Chen, Z.G.3
Shin, D.M.4
-
2
-
-
33747840618
-
Polymer conjugates as anticancer nanomedicines
-
R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006).
-
(2006)
Nat. Rev. Cancer
, vol.6
, Issue.9
, pp. 688-701
-
-
Duncan, R.1
-
3
-
-
0037072566
-
Nanoparticles in cancer therapy and diagnosis
-
I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002).
-
(2002)
Adv. Drug Deliv. Rev
, vol.54
, Issue.5
, pp. 631-651
-
-
Brigger, I.1
Dubernet, C.2
Couvreur, P.3
-
4
-
-
0037462997
-
Biodegradable nanoparticles for drug and gene delivery to cells and tissue
-
J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Adv. Drug Deliv. Rev. 55(3), 329–347 (2003).
-
(2003)
Adv. Drug Deliv. Rev
, vol.55
, Issue.3
, pp. 329-347
-
-
Panyam, J.1
Labhasetwar, V.2
-
5
-
-
0346848865
-
Nanotech approaches to drug delivery and imaging
-
S. K. Sahoo and V. Labhasetwar, “Nanotech approaches to drug delivery and imaging,” Drug Discov. Today 8(24), 1112–1120 (2003).
-
(2003)
Drug Discov. Today
, vol.8
, Issue.24
, pp. 1112-1120
-
-
Sahoo, S.K.1
Labhasetwar, V.2
-
6
-
-
70450221930
-
Biodegradable polymeric nanoparticles based drug delivery systems
-
A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids Surf. B Biointerfaces 75(1), 1–18 (2010).
-
(2010)
Colloids Surf. B Biointerfaces
, vol.75
, Issue.1
, pp. 1-18
-
-
Kumari, A.1
Yadav, S.K.2
Yadav, S.C.3
-
7
-
-
34547807218
-
Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro
-
J. Liu, J. Li, T. J. Rosol, X. Pan, and J. L. Voorhees, “Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro,” Phys. Med. Biol. 52(16), 4739–4747 (2007).
-
(2007)
Phys. Med. Biol
, vol.52
, Issue.16
, pp. 4739-4747
-
-
Liu, J.1
Li, J.2
Rosol, T.J.3
Pan, X.4
Voorhees, J.L.5
-
8
-
-
34249894977
-
Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody
-
P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, “Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody,” J. Control. Release 120(1-2), 18–26 (2007).
-
(2007)
J. Control. Release
, vol.120
, Issue.1-2
, pp. 18-26
-
-
Kocbek, P.1
Obermajer, N.2
Cegnar, M.3
Kos, J.4
Kristl, J.5
-
9
-
-
0034756945
-
Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease
-
A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.-M. Lehr, “Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease,” J. Pharmacol. Exp. Ther. 299(2), 775–781 (2001).
-
(2001)
J. Pharmacol. Exp. Ther
, vol.299
, Issue.2
, pp. 775-781
-
-
Lamprecht, A.1
Ubrich, N.2
Yamamoto, H.3
Schäfer, U.4
Takeuchi, H.5
Maincent, P.6
Kawashima, Y.7
Lehr, C.-M.8
-
10
-
-
3042613166
-
Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles
-
J. Panyam and V. Labhasetwar, “Sustained Cytoplasmic Delivery of Drugs with Intracellular Receptors Using Biodegradable Nanoparticles,” Mol. Pharm. 1(1), 77–84 (2004).
-
(2004)
Mol. Pharm
, vol.1
, Issue.1
, pp. 77-84
-
-
Panyam, J.1
Labhasetwar, V.2
-
11
-
-
33646689610
-
In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors
-
J. M. Koziara, T. R. Whisman, M. T. Tseng, and R. J. Mumper, “In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors,” J. Control. Release 112(3), 312–319 (2006).
-
(2006)
J. Control. Release
, vol.112
, Issue.3
, pp. 312-319
-
-
Koziara, J.M.1
Whisman, T.R.2
Tseng, M.T.3
Mumper, R.J.4
-
12
-
-
0027277746
-
Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves
-
A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Proceedings of Optics, Electro-Optics, & Laser Applications in Science& Engineering, (International Society for Optics and Photonics,1993), pp. 86–101.
-
(1993)
Proceedings of Optics, Electro-Optics, & Laser Applications in Science& Engineering, (International Society for Optics and Photonics
, pp. 86-101
-
-
Oraevsky, A.A.1
Jacques, S.L.2
Tittel, F.K.3
-
13
-
-
84992761976
-
Probing Different Biological Length Scales Using Photoacoustics: From 1 To 1000 MHz
-
A. H.-P. Ho, D. Kim, and M. G. Somekh, EdsSpringer
-
E. Hysi, E. M. Strohm, and M. C. Kolios, “Probing Different Biological Length Scales Using Photoacoustics: From 1 To 1000 MHz,” in Handbook of Photonics for Biomedical Engineering, A. H.-P. Ho, D. Kim, and M. G. Somekh, Eds. (Springer, 2014).
-
(2014)
Handbook of Photonics for Biomedical Engineering
-
-
Hysi, E.1
Strohm, E.M.2
Kolios, M.C.3
-
14
-
-
33646434247
-
Photoacoustic imaging in biomedicine
-
M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
-
(2006)
Rev. Sci. Instrum
, vol.77
, Issue.4
-
-
Xu, M.1
Wang, L.V.2
-
15
-
-
82255190668
-
Biomedical photoacoustic imaging
-
P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
-
(2011)
Interface Focus
, vol.1
, Issue.4
, pp. 602-631
-
-
Beard, P.1
-
16
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
-
(2000)
Nature
, vol.407
, Issue.6801
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
17
-
-
0032714683
-
Optical properties of circulating human blood in the wavelength range 400–2500 nm
-
A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
-
(1999)
J. Biomed. Opt
, vol.4
, Issue.1
, pp. 36-46
-
-
Roggan, A.1
Friebel, M.2
Do Rschel, K.3
Hahn, A.4
Ller, G.M.5
-
18
-
-
0035318612
-
A clearer vision for in vivo imaging
-
R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
-
(2001)
Nat. Biotechnol
, vol.19
, Issue.4
, pp. 316-317
-
-
Weissleder, R.1
-
19
-
-
0035760152
-
Enhancement of optoacoustic tissue contrast with absorbing nanoparticles
-
A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” in Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics, 2001), pp. 60–69.
-
(2001)
Proceedings of European Conference on Biomedical Optics, (International Society for Optics and Photonics
, pp. 60-69
-
-
Oraevsky, A.A.1
Karabutov, A.A.2
Savateeva, E.V.3
-
20
-
-
78249260180
-
In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages
-
C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages,” ACS Nano 4(8), 4559–4564 (2010).
-
(2010)
ACS Nano
, vol.4
, Issue.8
, pp. 4559-4564
-
-
Kim, C.1
Cho, E.C.2
Chen, J.3
Song, K.H.4
Au, L.5
Favazza, C.6
Zhang, Q.7
Cobley, C.M.8
Gao, F.9
Xia, Y.10
Wang, L.V.11
-
21
-
-
4544306615
-
Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography
-
J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
-
(2004)
Mol. Imaging Biol
, vol.6
, Issue.5
, pp. 341-349
-
-
Copland, J.A.1
Eghtedari, M.2
Popov, V.L.3
Kotov, N.4
Mamedova, N.5
Motamedi, M.6
Oraevsky, A.A.7
-
22
-
-
0037323313
-
Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging
-
J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).
-
(2003)
Med. Phys
, vol.30
, Issue.2
, pp. 235-247
-
-
Culver, J.P.1
Choe, R.2
Holboke, M.J.3
Zubkov, L.4
Durduran, T.5
Slemp, A.6
Ntziachristos, V.7
Chance, B.8
Yodh, A.G.9
-
23
-
-
84919941493
-
Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo
-
Y. Sun, Y. Wang, C. Niu, E. M. Strohm, Y. Zheng, H. Ran, R. Huang, D. Zhou, Y. Gong, Z. Wang, D. Wang, and M. C. Kolios, “Laser-Activatible PLGA Microparticles for Image-Guided Cancer Therapy In Vivo,” Adv. Funct. Mater. 24(48), 7674–7680 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, Issue.48
, pp. 7674-7680
-
-
Sun, Y.1
Wang, Y.2
Niu, C.3
Strohm, E.M.4
Zheng, Y.5
Ran, H.6
Huang, R.7
Zhou, D.8
Gong, Y.9
Wang, Z.10
Wang, D.11
Kolios, M.C.12
-
25
-
-
0034281706
-
Acoustic droplet vaporization for therapeutic and diagnostic applications
-
O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
-
(2000)
Ultrasound Med. Biol
, vol.26
, Issue.7
, pp. 1177-1189
-
-
Kripfgans, O.D.1
Fowlkes, J.B.2
Miller, D.L.3
Eldevik, O.P.4
Carson, P.L.5
-
27
-
-
80052195856
-
Formulation and Acoustic Studies of a New Phase- Shift Agent for Diagnostic and Therapeutic Ultrasound
-
P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and Acoustic Studies of a New Phase- Shift Agent for Diagnostic and Therapeutic Ultrasound,” Langmuir 27(17), 10412–10420 (2011).
-
(2011)
Langmuir
, vol.27
, Issue.17
, pp. 10412-10420
-
-
Sheeran, P.S.1
Luois, S.2
Dayton, P.A.3
Matsunaga, T.O.4
-
28
-
-
80053006122
-
Vaporization of perfluorocarbon droplets using optical irradiation
-
E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
-
(2011)
Biomed. Opt. Express
, vol.2
, Issue.6
, pp. 1432-1442
-
-
Strohm, E.1
Rui, M.2
Gorelikov, I.3
Matsuura, N.4
Kolios, M.5
-
29
-
-
84856689512
-
Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging
-
K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
-
(2012)
Nat. Commun
, vol.3
, pp. 618
-
-
Wilson, K.1
Homan, K.2
Emelianov, S.3
-
30
-
-
16444369966
-
Preparation and evaluation of poly(Llactide- co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography
-
W. Cui, J. Bei, S. Wang, G. Zhi, Y. Zhao, X. Zhou, H. Zhang, and Y. Xu, “Preparation and evaluation of poly(Llactide- co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,” J. Biomed. Mater. Res. B Appl. Biomater. 73B(1), 171–178 (2005).
-
(2005)
J. Biomed. Mater. Res. B Appl. Biomater
, vol.73B
, Issue.1
, pp. 171-178
-
-
Cui, W.1
Bei, J.2
Wang, S.3
Zhi, G.4
Zhao, Y.5
Zhou, X.6
Zhang, H.7
Xu, Y.8
-
31
-
-
33646397048
-
Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization
-
E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization,” Langmuir 22(9), 4397–4402 (2006).
-
(2006)
Langmuir
, vol.22
, Issue.9
, pp. 4397-4402
-
-
Pisani, E.1
Tsapis, N.2
Paris, J.3
Nicolas, V.4
Cattel, L.5
Fattal, E.6
-
32
-
-
0000559725
-
Polymeric systems for controlled drug release
-
K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, “Polymeric systems for controlled drug release,” Chem. Rev. 99(11), 3181–3198 (1999).
-
(1999)
Chem. Rev
, vol.99
, Issue.11
, pp. 3181-3198
-
-
Uhrich, K.E.1
Cannizzaro, S.M.2
Langer, R.S.3
Shakesheff, K.M.4
-
33
-
-
78651323921
-
Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions
-
M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
-
(2010)
Pharm. Res
, vol.27
, Issue.12
, pp. 2753-2765
-
-
Fabiilli, M.L.1
Lee, J.A.2
Kripfgans, O.D.3
Carson, P.L.4
Fowlkes, J.B.5
-
34
-
-
33847284541
-
Pharmacogenetics of paclitaxel metabolism
-
J. Spratlin and M. B. Sawyer, “Pharmacogenetics of paclitaxel metabolism,” Crit. Rev. Oncol. Hematol. 61(3), 222–229 (2007).
-
(2007)
Crit. Rev. Oncol. Hematol
, vol.61
, Issue.3
, pp. 222-229
-
-
Spratlin, J.1
Sawyer, M.B.2
-
35
-
-
0035079758
-
Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel
-
M. Ishitobi, E. Shin, and N. Kikkawa, “Metastatic breast cancer with resistance to both anthracycline and docetaxel successfully treated with weekly paclitaxel,” Int. J. Clin. Oncol. 6(1), 55–58 (2001).
-
(2001)
Int. J. Clin. Oncol
, vol.6
, Issue.1
, pp. 55-58
-
-
Ishitobi, M.1
Shin, E.2
Kikkawa, N.3
-
36
-
-
0025343062
-
Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(Ethylene glycol)-poly(aspartic acid) block copolymer
-
M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Res. 50(6), 1693–1700 (1990).
-
(1990)
Cancer Res
, vol.50
, Issue.6
, pp. 1693-1700
-
-
Yokoyama, M.1
Miyauchi, M.2
Yamada, N.3
Okano, T.4
Sakurai, Y.5
Kataoka, K.6
Inoue, S.7
-
37
-
-
84875260268
-
Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy
-
M. Talelli, C. J. F. Rijcken, W. E. Hennink, and T. Lammers, “Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy,” Curr. Opin. Solid State Mater. Sci. 16(6), 302–309 (2012).
-
(2012)
Curr. Opin. Solid State Mater. Sci
, vol.16
, Issue.6
, pp. 302-309
-
-
Talelli, M.1
Rijcken, C.J.F.2
Hennink, W.E.3
Lammers, T.4
-
38
-
-
33746096072
-
A study of the nucleation and growth processes in the synthesis of colloidal gold
-
J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
-
(1951)
Discuss. Faraday Soc
, vol.11
, pp. 55-75
-
-
Turkevich, J.1
Stevenson, P.C.2
Hillier, J.3
-
39
-
-
0000060394
-
Particle size and sol stability in metal colloids
-
G. Frens, “Particle size and sol stability in metal colloids,” Kolloid-Z. Z. Für Polym. 250(7), 736–741 (1972).
-
(1972)
Kolloid-Z. Z. Für Polym
, vol.250
, Issue.7
, pp. 736-741
-
-
Frens, G.1
-
40
-
-
80052201739
-
Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening
-
N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing Versus Ostwald Ripening,” Langmuir 27(17), 11098–11105 (2011).
-
(2011)
Langmuir
, vol.27
, Issue.17
, pp. 11098-11105
-
-
Bastús, N.G.1
Comenge, J.2
Puntes, V.3
-
41
-
-
20544434446
-
Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes
-
S. H. Liu and M. Y. Han, “Synthesis, Functionalization, and Bioconjugation of Monodisperse, Silica-Coated Gold Nanoparticles: Robust Bioprobes,” Adv. Funct. Mater. 15(6), 961–967 (2005).
-
(2005)
Adv. Funct. Mater
, vol.15
, Issue.6
, pp. 961-967
-
-
Liu, S.H.1
Han, M.Y.2
-
42
-
-
83455238691
-
Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells
-
I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, “Silica-coated quantum dots for optical evaluation of perfluorocarbon droplet interactions with cells,” Langmuir 27(24), 15024–15033 (2011).
-
(2011)
Langmuir
, vol.27
, Issue.24
, pp. 15024-15033
-
-
Gorelikov, I.1
Martin, A.L.2
Seo, M.3
Matsuura, N.4
-
43
-
-
84902089626
-
PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging
-
Y. J. Wang, E. M. Strohm, Y. Sun, C. Niu, Y. Zheng, Z. Wang, and M. C. Kolios, “PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging,” Proc. SPIE 8943, 89433M (2014).
-
(2014)
Proc. SPIE 8943
-
-
Wang, Y.J.1
Strohm, E.M.2
Sun, Y.3
Niu, C.4
Zheng, Y.5
Wang, Z.6
Kolios, M.C.7
-
45
-
-
79851476851
-
Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers
-
Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
-
(2011)
Nano Lett
, vol.11
, Issue.2
, pp. 348-354
-
-
Chen, Y.-S.1
Frey, W.2
Kim, S.3
Kruizinga, P.4
Homan, K.5
Emelianov, S.6
-
46
-
-
0022858683
-
A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs
-
Y. Matsumura and H. Maeda, “A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
-
(1986)
Cancer Res
, vol.46
, Issue.12
, pp. 6387-6392
-
-
Matsumura, Y.1
Maeda, H.2
-
47
-
-
0029150245
-
Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size
-
F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, “Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size,” Cancer Res. 55(17), 3752–3756 (1995).
-
(1995)
Cancer Res
, vol.55
, Issue.17
, pp. 3752-3756
-
-
Yuan, F.1
Dellian, M.2
Fukumura, D.3
Leunig, M.4
Berk, D.A.5
Torchilin, V.P.6
Jain, R.K.7
-
48
-
-
65549111818
-
Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom
-
C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jacques, and J. J. L. Carson, “Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom,” Nanotechnology 20(19), 195102 (2009).
-
(2009)
Nanotechnology
, vol.20
, Issue.19
-
-
Didychuk, C.L.1
Ephrat, P.2
Chamson-Reig, A.3
Jacques, S.L.4
Carson, J.J.L.5
-
49
-
-
84893345669
-
Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions
-
C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
-
(2014)
Appl. Phys. Lett
, vol.104
, Issue.3
-
-
Wei, C.W.1
Lombardo, M.2
Larson-Smith, K.3
Pelivanov, I.4
Perez, C.5
Xia, J.6
Matula, T.7
Pozzo, D.8
O’Donnell, M.9
-
50
-
-
84923409016
-
Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles
-
A. J. Dixon, S. Hu, A. L. Klibanov, and J. A. Hossack, “Oscillatory Dynamics and In Vivo Photoacoustic Imaging Performance of Plasmonic Nanoparticle-Coated Microbubbles,” Small 11(25), 3066–3077 (2015).
-
(2015)
Small
, vol.11
, Issue.25
, pp. 3066-3077
-
-
Dixon, A.J.1
Hu, S.2
Klibanov, A.L.3
Hossack, J.A.4
-
51
-
-
0018746767
-
Coated pits, coated vesicles, and receptor-mediated endocytosis
-
J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, “Coated pits, coated vesicles, and receptor-mediated endocytosis,” Nature 279(5715), 679–685 (1979).
-
(1979)
Nature
, vol.279
, Issue.5715
, pp. 679-685
-
-
Goldstein, J.L.1
Anderson, R.G.W.2
Brown, M.S.3
-
52
-
-
78049348220
-
Intracellular uptake, transport, and processing of gold nanostructures
-
D. B. Chithrani, “Intracellular uptake, transport, and processing of gold nanostructures,” Mol. Membr. Biol. 27(7), 299–311 (2010).
-
(2010)
Mol. Membr. Biol
, vol.27
, Issue.7
, pp. 299-311
-
-
Chithrani, D.B.1
|