-
1
-
-
79959873914
-
The development and application of optogenetics
-
Fenno, L.; Yizhar, O.; Deisseroth, K. The Development and Application of Optogenetics. Annu. Rev. Neurosci. 2011, 34, 389-412.
-
(2011)
Annu. Rev. Neurosci.
, vol.34
, pp. 389-412
-
-
Fenno, L.1
Yizhar, O.2
Deisseroth, K.3
-
2
-
-
34247222730
-
Multimodal fast optical interrogation of neural circuitry
-
Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, J. F.; Kay, K.; Watzke, N.; Wood, P. G.; Bamberg, E.; Nagel, G.; Gottschalk, A.; Deisseroth, K. Multimodal Fast Optical Interrogation of Neural Circuitry. Nature 2007, 446, 633-U4.
-
(2007)
Nature
, vol.446
, pp. 633U4
-
-
Zhang, F.1
Wang, L.P.2
Brauner, M.3
Liewald, J.F.4
Kay, K.5
Watzke, N.6
Wood, P.G.7
Bamberg, E.8
Nagel, G.9
Gottschalk, A.10
Deisseroth, K.11
-
3
-
-
26444621497
-
Millisecond-timescale, genetically targeted optical control of neural activity
-
Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity. Nat. Neurosci. 2005, 8, 1263-1268.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1263-1268
-
-
Boyden, E.S.1
Zhang, F.2
Bamberg, E.3
Nagel, G.4
Deisseroth, K.5
-
4
-
-
67651160648
-
Implanted neural interfaces: Biochallenges and engineered solutions
-
Grill, W. M.; Norman, S. E.; Bellamkonda, R. V. Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annu. Rev. Biomed. Eng. 2009, 11, 1-24.
-
(2009)
Annu. Rev. Biomed. Eng.
, vol.11
, pp. 1-24
-
-
Grill, W.M.1
Norman, S.E.2
Bellamkonda, R.V.3
-
5
-
-
77956443547
-
Remote control of ion channels and neurons through magnetic-field heating of nanoparticles
-
Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote Control of Ion Channels and Neurons Through Magnetic-Field Heating of Nanoparticles. Nat. Nanotechnol. 2010, 5, 602-606.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 602-606
-
-
Huang, H.1
Delikanli, S.2
Zeng, H.3
Ferkey, D.M.4
Pralle, A.5
-
6
-
-
85047686814
-
Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics
-
McCall, J. G.; Kim, T. I.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Fabrication and Application of Flexible, Multimodal Light-Emitting Devices for Wireless Optogenetics. Nat. Protoc. 2013, 8, 2413-2428.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2413-2428
-
-
McCall, J.G.1
Kim, T.I.2
Shin, G.3
Huang, X.4
Jung, Y.H.5
Al-Hasani, R.6
Omenetto, F.G.7
Bruchas, M.R.8
Rogers, J.A.9
-
7
-
-
84876310253
-
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
-
Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H.; Lu, C.; Lee, S. D.; Song, I.S.; Shin, G.; Al-Hasani, R.; Kim, S.; Tan, M. P.; Huang, Y.; Omenetto, F. G.; Rodger, J. A.; et al. Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science 2013, 340, 211-216.
-
(2013)
Science
, vol.340
, pp. 211-216
-
-
Kim, T.I.1
McCall, J.G.2
Jung, Y.H.3
Huang, X.4
Siuda, E.R.5
Li, Y.H.6
Song, J.Z.7
Song, Y.M.8
Pao, H.A.9
Kim, R.H.10
Lu, C.11
Lee, S.D.12
Song, I.S.13
Shin, G.14
Al-Hasani, R.15
Kim, S.16
Tan, M.P.17
Huang, Y.18
Omenetto, F.G.19
Rodger, J.A.20
more..
-
8
-
-
84884906500
-
ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation
-
Lin, J. Y.; Knutsen, P. M.; Muller, A.; Kleinfeld, D.; Tsien, R. Y. ReaChR: A Red-Shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation. Nat. Neurosci. 2013, 16, 1499-1508.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1499-1508
-
-
Lin, J.Y.1
Knutsen, P.M.2
Muller, A.3
Kleinfeld, D.4
Tsien, R.Y.5
-
9
-
-
23844531202
-
Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction
-
Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600-11605.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 11600-11605
-
-
Kam, N.W.S.1
O'Connell, M.2
Wisdom, J.A.3
Dai, H.J.4
-
10
-
-
84908428846
-
Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
-
Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y. W.; Wang, C.; Liu, Z.; Chan, E. M.; Duan, C. Y.; Han, G. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy. ACS Nano 2014, 8, 10621-10630.
-
(2014)
ACS Nano
, vol.8
, pp. 10621-10630
-
-
Punjabi, A.1
Wu, X.2
Tokatli-Apollon, A.3
El-Rifai, M.4
Lee, H.5
Zhang, Y.W.6
Wang, C.7
Liu, Z.8
Chan, E.M.9
Duan, C.Y.10
Han, G.11
-
11
-
-
79959194595
-
Upconverting nanoparticles
-
Haase, M.; Schafer, H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
-
(2011)
Angew. Chem., Int. Ed.
, vol.50
, pp. 5808-5829
-
-
Haase, M.1
Schafer, H.2
-
12
-
-
84862908692
-
Upconversion nanophosphors for small-animal imaging
-
Zhou, J.; Liu, Z.; Li, F. Y. Upconversion Nanophosphors for Small-Animal Imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 1323-1349
-
-
Zhou, J.1
Liu, Z.2
Li, F.Y.3
-
13
-
-
63049112698
-
Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
-
Wang, F.; Liu, X. G. Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 976-989
-
-
Wang, F.1
Liu, X.G.2
-
14
-
-
80054993650
-
4 upconversion nanocryst-als for sensitive bioimaging in vivo
-
4 Upconversion Nanocryst-als for Sensitive Bioimaging In Vivo. J. Am. Chem. Soc. 2011, 133, 17122-17125.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 17122-17125
-
-
Liu, Q.1
Sun, Y.2
Yang, T.S.3
Feng, W.4
Li, C.G.5
Li, F.Y.6
-
15
-
-
84866639563
-
2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging
-
2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 2012, 6, 8280-8287.
-
(2012)
ACS Nano
, vol.6
, pp. 8280-8287
-
-
Chen, G.Y.1
Shen, J.2
Ohulchanskyy, T.Y.3
Patel, N.J.4
Kutikov, A.5
Li, Z.P.6
Song, J.7
Pandey, R.K.8
Agren, H.9
Prasad, P.N.10
Han, G.11
-
16
-
-
84923218517
-
Upconversion nanoparticles: A versatile solution to multiscale biological imaging
-
Wu, X.; Chen, G.; Shen, J.; Li, Z.; Zhang, Y.; Han, G. Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chem. 2015, 26, 166-175.
-
(2015)
Bioconjugate Chem.
, vol.26
, pp. 166-175
-
-
Wu, X.1
Chen, G.2
Shen, J.3
Li, Z.4
Zhang, Y.5
Han, G.6
-
17
-
-
84924559595
-
3+)-based upconversion nanomaterials for drug delivery
-
3+)-Based Upconversion Nanomaterials for Drug Delivery. Chem. Soc. Rev. 2015, 44, 1416-1448.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 1416-1448
-
-
Yang, D.M.1
Ma, P.A.2
Hou, Z.Y.3
Cheng, Z.Y.4
Li, C.X.5
Lin, J.6
-
18
-
-
84878364571
-
Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy
-
Shen, J.; Zhao, L.; Han, G. Lanthanide-Doped Upconverting Luminescent Nanoparticle Platforms for Optical Imaging-Guided Drug Delivery and Therapy. Adv. Drug Delivery Rev. 2013, 65, 744-755.
-
(2013)
Adv. Drug Delivery Rev.
, vol.65
, pp. 744-755
-
-
Shen, J.1
Zhao, L.2
Han, G.3
-
19
-
-
84906693058
-
Upconversion nanoparticles asversatile light nanotransducers for photoactivation applications
-
Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion Nanoparticles AsVersatile Light Nanotransducers for Photoactivation Applications. Chem. Soc. Rev. 2015, 44, 1449-1478.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 1449-1478
-
-
Idris, N.M.1
Jayakumar, M.K.G.2
Bansal, A.3
Zhang, Y.4
-
20
-
-
84895047883
-
Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy
-
Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z.; Liu, Z. Protein Modified Upconversion Nanoparticles for Imaging-Guided Combined Photothermal and Photodynamic Therapy. Biomaterials 2014, 35, 2915-2923.
-
(2014)
Biomaterials
, vol.35
, pp. 2915-2923
-
-
Chen, Q.1
Wang, C.2
Cheng, L.3
He, W.W.4
Cheng, Z.5
Liu, Z.6
-
21
-
-
84935024404
-
Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy
-
Xiang, J.; Xu, L. G.; Gong, H.; Zhu, W. W.; Wang, C.; Xu, J.; Feng, L. Z.; Cheng, L.; Peng, R.; Liu, Z. Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. ACS Nano 2015, 9, 6401-6411.
-
(2015)
ACS Nano
, vol.9
, pp. 6401-6411
-
-
Xiang, J.1
Xu, L.G.2
Gong, H.3
Zhu, W.W.4
Wang, C.5
Xu, J.6
Feng, L.Z.7
Cheng, L.8
Peng, R.9
Liu, Z.10
-
22
-
-
84861878925
-
Remote activation of biomolecules in deep tissues using near-infrared-to-uv upconversion nanotransducers
-
Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Remote Activation of Biomolecules in Deep Tissues Using Near-Infrared-to-UV Upconversion Nanotransducers. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8483-8488.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 8483-8488
-
-
Jayakumar, M.K.G.1
Idris, N.M.2
Zhang, Y.3
-
23
-
-
84863338070
-
In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles
-
Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G.; Xing, B. G. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125-3129.
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 3125-3129
-
-
Yang, Y.M.1
Shao, Q.2
Deng, R.R.3
Wang, C.4
Teng, X.5
Cheng, K.6
Cheng, Z.7
Huang, L.8
Liu, Z.9
Liu, X.G.10
Xing, B.G.11
-
24
-
-
84885416579
-
2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation
-
2 Core/Shell Nanoparticles for In Situ Real-Time Recorded Biocompatible Photoactivation. Small 2013, 9, 3213-3217.
-
(2013)
Small
, vol.9
, pp. 3213-3217
-
-
Shen, J.1
Chen, G.2
Ohulchanskyy, T.Y.3
Kesseli, S.J.4
Buchholz, S.5
Li, Z.6
Prasad, P.N.7
Han, G.8
-
25
-
-
79959381323
-
Rare-earth ion doped up-conversion materials for photovoltaic applications
-
Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J. Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications. Adv. Mater. 2011, 23, 2675-2680.
-
(2011)
Adv. Mater.
, vol.23
, pp. 2675-2680
-
-
Wang, H.Q.1
Batentschuk, M.2
Osvet, A.3
Pinna, L.4
Brabec, C.J.5
-
26
-
-
84928078421
-
Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue
-
Tedford, C. E.; DeLapp, S.; Jacques, S.; Anders, J. Quantitative Analysis of Transcranial and Intraparenchymal Light Penetration in Human Cadaver Brain Tissue. Lasers Surg. Med. 2015, 47, 312-322.
-
(2015)
Lasers Surg. Med.
, vol.47
, pp. 312-322
-
-
Tedford, C.E.1
DeLapp, S.2
Jacques, S.3
Anders, J.4
-
27
-
-
84918822932
-
Enhancing luminescence in lanthanide-doped upconversion nanoparticles
-
Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 11702-11715.
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 11702-11715
-
-
Han, S.Y.1
Deng, R.R.2
Xie, X.J.3
Liu, X.G.4
-
28
-
-
84883136168
-
Theranostic upconversion nanoparticles (i)
-
Chen, G. Y.; Han, G. Theranostic Upconversion Nanoparticles (I). Theranostics 2013, 3, 289-291.
-
(2013)
Theranostics
, vol.3
, pp. 289-291
-
-
Chen, G.Y.1
Han, G.2
-
29
-
-
84943552309
-
Rationally designed energy transfer in upconverting nanoparticles
-
Chan, E. M.; Levy, E. S.; Cohen, B. E. Rationally Designed Energy Transfer in Upconverting Nanoparticles. Adv. Mater. 2015, 27, 5753-5761.
-
(2015)
Adv. Mater.
, vol.27
, pp. 5753-5761
-
-
Chan, E.M.1
Levy, E.S.2
Cohen, B.E.3
-
30
-
-
84922381756
-
Photon upconversion in core-shell nanoparticles
-
Chen, X.; Peng, D.; Ju, Q.; Wang, F. Photon Upconversion in Core-Shell Nanoparticles. Chem. Soc. Rev. 2015, 44, 1318-1330.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 1318-1330
-
-
Chen, X.1
Peng, D.2
Ju, Q.3
Wang, F.4
-
31
-
-
77957552145
-
Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles
-
Wang, F.; Wang, J.; Liu, X. Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 7456-7460.
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 7456-7460
-
-
Wang, F.1
Wang, J.2
Liu, X.3
-
32
-
-
84883787046
-
Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm
-
Shen, J.; Chen, G. Y.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G. Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1 (9), 644-650.
-
(2013)
Adv. Opt. Mater.
, vol.1
, Issue.9
, pp. 644-650
-
-
Shen, J.1
Chen, G.Y.2
Vu, A.M.3
Fan, W.4
Bilsel, O.S.5
Chang, C.C.6
Han, G.7
-
33
-
-
84883246016
-
3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect
-
3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect. ACS Nano 2013, 7, 7200-7206.
-
(2013)
ACS Nano
, vol.7
, pp. 7200-7206
-
-
Wang, Y.F.1
Liu, G.Y.2
Sun, L.D.3
Xiao, J.W.4
Zhou, J.C.5
Yan, C.H.6
-
34
-
-
84866668249
-
Photonics: Upconversion goes broadband
-
Xie, X.; Liu, X. Photonics: Upconversion Goes Broadband. Nat. Mater. 2012, 11, 842-843.
-
(2012)
Nat. Mater.
, vol.11
, pp. 842-843
-
-
Xie, X.1
Liu, X.2
-
35
-
-
84864565484
-
Broadband dye-sensitized upconversion of near-infrared light
-
Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband Dye-Sensitized Upconversion of Near-Infrared Light. Nat. Photonics 2012, 6, 560-564.
-
(2012)
Nat. Photonics
, vol.6
, pp. 560-564
-
-
Zou, W.Q.1
Visser, C.2
Maduro, J.A.3
Pshenichnikov, M.S.4
Hummelen, J.C.5
-
36
-
-
33646592273
-
High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties
-
Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 2006, 128, 6426-6436.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 6426-6436
-
-
Mai, H.X.1
Zhang, Y.W.2
Si, R.3
Yan, Z.G.4
Sun, L.D.5
You, L.P.6
Yan, C.H.7
-
37
-
-
70349493152
-
The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles
-
Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 2924-2929
-
-
Vetrone, F.1
Naccache, R.2
Mahalingam, V.3
Morgan, C.G.4
Capobianco, J.A.5
-
38
-
-
79955629312
-
3+ nanoparticles by active-shell modification
-
3+ Nanoparticles by Active-Shell Modification. J. Mater. Chem. 2011, 21, 5923-5927.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 5923-5927
-
-
Yang, D.M.1
Li, C.X.2
Li, G.G.3
Shang, M.M.4
Kang, X.J.5
Lin, J.6
-
39
-
-
84938419705
-
3+-sensitized upconversion nanophosphors for highly efficient ucl imaging and ph-responsive drug delivery
-
3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery. Adv. Funct. Mater. 2015, 25, 4717-4729.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 4717-4729
-
-
Liu, B.1
Chen, Y.2
Li, C.3
He, F.4
Hou, Z.5
Huang, S.6
Zhu, H.7
Chen, X.8
Lin, J.9
-
40
-
-
56049103313
-
In-depth activation of channelrhodop-sin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam
-
Mohanty, S. K.; Reinscheid, R. K.; Liu, X.; Okamura, N.; Krasieva, T. B.; Berns, M. W. In-Depth Activation of Channelrhodop-sin 2-Sensitized Excitable Cells with High Spatial Resolution Using Two-Photon Excitation with a Near-Infrared Laser Microbeam. Biophys. J. 2008, 95, 3916-3926.
-
(2008)
Biophys. J.
, vol.95
, pp. 3916-3926
-
-
Mohanty, S.K.1
Reinscheid, R.K.2
Liu, X.3
Okamura, N.4
Krasieva, T.B.5
Berns, M.W.6
-
41
-
-
77957674071
-
Scanless two-photon excitation of channelrhodopsin-2
-
Papagiakoumou, E.; Anselmi, F.; Begue, A.; de Sars, V.; Gluckstad, J.; Isacoff, E. Y.; Emiliani, V. Scanless Two-Photon Excitation of Channelrhodopsin-2. Nat. Methods 2010, 7, 848-854.
-
(2010)
Nat. Methods
, vol.7
, pp. 848-854
-
-
Papagiakoumou, E.1
Anselmi, F.2
Begue, A.3
De Sars, V.4
Gluckstad, J.5
Isacoff, E.Y.6
Emiliani, V.7
-
42
-
-
84875783767
-
Encapsulation of hydrophobic drugs in pluronic f127 micelles: Effects of drug hydrophobicity
-
Basak, R.; Bandyopadhyay, R. Encapsulation of Hydrophobic Drugs in Pluronic F127 Micelles: Effects of Drug Hydrophobicity, Solution Temperature, and pH. Langmuir 2013, 29, 4350-4356.
-
(2013)
Solution Temperature, and PH. Langmuir
, vol.29
, pp. 4350-4356
-
-
Basak, R.1
Bandyopadhyay, R.2
-
43
-
-
84864406605
-
Bioconjugated pluronic triblock-copolymer micelle-encapsulated quantum dots for targeted imaging of cancer: In vitro and in vivo studies
-
Liu, L.; Yong, K. T.; Roy, I.; Law, W. C.; Ye, L.; Liu, J.; Kumar, R.; Zhang, X.; Prasad, P. N. Bioconjugated Pluronic Triblock-Copolymer Micelle-Encapsulated Quantum Dots for Targeted Imaging of Cancer: in vitro and in vivo Studies. Theranostics 2012, 2, 705-713.
-
(2012)
Theranostics
, vol.2
, pp. 705-713
-
-
Liu, L.1
Yong, K.T.2
Roy, I.3
Law, W.C.4
Ye, L.5
Liu, J.6
Kumar, R.7
Zhang, X.8
Prasad, P.N.9
|