-
1
-
-
0003779174
-
Histology of the Nervous System of Man and Vertebrates
-
1st edn Oxford University Press
-
1 Cajal, S.R.Y., Swanson, N., Histology of the Nervous System of Man and Vertebrates. 1st edn, 1995, Oxford University Press.
-
(1995)
-
-
Cajal, S.R.Y.1
Swanson, N.2
-
2
-
-
0035088694
-
How do dendrites take their shape?
-
2 Scott, E.K., Luo, L., How do dendrites take their shape?. Nat. Neurosci. 4 (2001), 359–365.
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 359-365
-
-
Scott, E.K.1
Luo, L.2
-
3
-
-
1842782507
-
Information processing in the axon
-
3 Debanne, D., Information processing in the axon. Nat. Rev. Neurosci. 5 (2004), 304–316.
-
(2004)
Nat. Rev. Neurosci.
, vol.5
, pp. 304-316
-
-
Debanne, D.1
-
4
-
-
4444241360
-
Synaptic connectivity and neuronal morphology: two sides of the same coin
-
4 Chklovskii, D.B., Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43 (2004), 609–617.
-
(2004)
Neuron
, vol.43
, pp. 609-617
-
-
Chklovskii, D.B.1
-
5
-
-
69249100460
-
Experience-dependent structural synaptic plasticity in the mammalian brain
-
5 Holtmaat, A., Svoboda, K., Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10 (2009), 647–658.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, pp. 647-658
-
-
Holtmaat, A.1
Svoboda, K.2
-
6
-
-
84862628165
-
Structural plasticity upon learning: regulation and functions
-
6 Caroni, P., et al. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13 (2012), 478–490.
-
(2012)
Nat. Rev. Neurosci.
, vol.13
, pp. 478-490
-
-
Caroni, P.1
-
7
-
-
77949273382
-
Structural dynamics of dendritic spines in memory and cognition
-
7 Kasai, H., et al. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33 (2010), 121–129.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 121-129
-
-
Kasai, H.1
-
8
-
-
55049136860
-
Strength through diversity
-
8 Nelson, S.B., Turrigiano, G.G., Strength through diversity. Neuron 60 (2008), 477–482.
-
(2008)
Neuron
, vol.60
, pp. 477-482
-
-
Nelson, S.B.1
Turrigiano, G.G.2
-
9
-
-
84863888017
-
Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function
-
9 Turrigiano, G., Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol., 4, 2012, a005736.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a005736
-
-
Turrigiano, G.1
-
10
-
-
0024473444
-
Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics
-
10 Harris, K.M., Stevens, J.K., Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9 (1989), 2982–2997.
-
(1989)
J. Neurosci.
, vol.9
, pp. 2982-2997
-
-
Harris, K.M.1
Stevens, J.K.2
-
11
-
-
0035923749
-
Inactivity produces increases in neurotransmitter release and synapse size
-
11 Murthy, V.N., et al. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32 (2001), 673–682.
-
(2001)
Neuron
, vol.32
, pp. 673-682
-
-
Murthy, V.N.1
-
12
-
-
79960837954
-
Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation
-
12 Kay, L., et al. Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation. Nat. Neurosci. 14 (2011), 688–690.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 688-690
-
-
Kay, L.1
-
13
-
-
78650756374
-
Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity
-
13 Lindskog, M., et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc. Natl Acad. Sci. U.S.A. 107 (2010), 21806–21811.
-
(2010)
Proc. Natl Acad. Sci. U.S.A.
, vol.107
, pp. 21806-21811
-
-
Lindskog, M.1
-
14
-
-
75349111698
-
Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex
-
14 Hardingham, N.R., et al. Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J. Neurosci. 30 (2010), 1441–1451.
-
(2010)
J. Neurosci.
, vol.30
, pp. 1441-1451
-
-
Hardingham, N.R.1
-
15
-
-
54549119477
-
Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses
-
15 Tokuoka, H., Goda, Y., Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses. Proc. Natl Acad. Sci. U.S.A. 105 (2008), 14656–14661.
-
(2008)
Proc. Natl Acad. Sci. U.S.A.
, vol.105
, pp. 14656-14661
-
-
Tokuoka, H.1
Goda, Y.2
-
16
-
-
80052411410
-
Dendritic spines and distributed circuits
-
16 Yuste, R., Dendritic spines and distributed circuits. Neuron 71 (2011), 772–781.
-
(2011)
Neuron
, vol.71
, pp. 772-781
-
-
Yuste, R.1
-
17
-
-
84890480079
-
Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites
-
17 Menon, V., et al. Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron 80 (2013), 1451–1463.
-
(2013)
Neuron
, vol.80
, pp. 1451-1463
-
-
Menon, V.1
-
18
-
-
0037180832
-
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex
-
18 Trachtenberg, J.T., et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420 (2002), 788–794.
-
(2002)
Nature
, vol.420
, pp. 788-794
-
-
Trachtenberg, J.T.1
-
19
-
-
58249103964
-
Experience leaves a lasting structural trace in cortical circuits
-
19 Hofer, S.B., et al. Experience leaves a lasting structural trace in cortical circuits. Nature 457 (2009), 313–317.
-
(2009)
Nature
, vol.457
, pp. 313-317
-
-
Hofer, S.B.1
-
20
-
-
29444437856
-
Prior experience enhances plasticity in adult visual cortex
-
20 Hofer, S.B., et al. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9 (2006), 127–132.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 127-132
-
-
Hofer, S.B.1
-
21
-
-
0038198695
-
NMDA receptor-dependent ocular dominance plasticity in adult visual cortex
-
21 Sawtell, N.B., et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38 (2003), 977–985.
-
(2003)
Neuron
, vol.38
, pp. 977-985
-
-
Sawtell, N.B.1
-
22
-
-
0032567928
-
Activity-dependent scaling of quantal amplitude in neocortical neurons
-
22 Turrigiano, G.G., et al. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 (1998), 892–896.
-
(1998)
Nature
, vol.391
, pp. 892-896
-
-
Turrigiano, G.G.1
-
23
-
-
0035708355
-
Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons
-
23 Matsuzaki, M., et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4 (2001), 1086–1092.
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 1086-1092
-
-
Matsuzaki, M.1
-
24
-
-
33845883324
-
Synapse-specific regulation of AMPA receptor function by PSD-95
-
24 Béïque, J-C., et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl Acad. Sci. U.S.A. 103 (2006), 19535–19540.
-
(2006)
Proc. Natl Acad. Sci. U.S.A.
, vol.103
, pp. 19535-19540
-
-
Béïque, J.-C.1
-
25
-
-
58849093289
-
Rapid functional maturation of nascent dendritic spines
-
25 Zito, K., et al. Rapid functional maturation of nascent dendritic spines. Neuron 61 (2009), 247–258.
-
(2009)
Neuron
, vol.61
, pp. 247-258
-
-
Zito, K.1
-
26
-
-
84885734405
-
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
-
26 Keck, T., et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80 (2013), 327–334.
-
(2013)
Neuron
, vol.80
, pp. 327-334
-
-
Keck, T.1
-
27
-
-
47849090741
-
Two opposing plasticity mechanisms pulling a single synapse
-
27 Rabinowitch, I., Segev, I., Two opposing plasticity mechanisms pulling a single synapse. Trends Neurosci. 31 (2008), 377–383.
-
(2008)
Trends Neurosci.
, vol.31
, pp. 377-383
-
-
Rabinowitch, I.1
Segev, I.2
-
28
-
-
48749086302
-
Local dendritic activity sets release probability at hippocampal synapses
-
28 Branco, T., et al. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59 (2008), 475–485.
-
(2008)
Neuron
, vol.59
, pp. 475-485
-
-
Branco, T.1
-
29
-
-
38649142116
-
Homeostatic regulation of AMPA receptor expression at single hippocampal synapses
-
29 Hou, Q., et al. Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. Proc. Natl Acad. Sci. U.S.A. 105 (2008), 775–780.
-
(2008)
Proc. Natl Acad. Sci. U.S.A.
, vol.105
, pp. 775-780
-
-
Hou, Q.1
-
30
-
-
80052396435
-
Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex
-
30 Keck, T., et al. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71 (2011), 869–882.
-
(2011)
Neuron
, vol.71
, pp. 869-882
-
-
Keck, T.1
-
31
-
-
52949133401
-
Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex
-
31 Keck, T., et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11 (2008), 1162–1167.
-
(2008)
Nat. Neurosci.
, vol.11
, pp. 1162-1167
-
-
Keck, T.1
-
32
-
-
33745562839
-
Experience-dependent and cell-type-specific spine growth in the neocortex
-
32 Holtmaat, A., et al. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441 (2006), 979–983.
-
(2006)
Nature
, vol.441
, pp. 979-983
-
-
Holtmaat, A.1
-
33
-
-
84879270670
-
Recombinant probes for visualizing endogenous synaptic proteins in living neurons
-
33 Gross, G.G., et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78 (2013), 971–985.
-
(2013)
Neuron
, vol.78
, pp. 971-985
-
-
Gross, G.G.1
-
34
-
-
84860274120
-
Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex
-
34 Chen, J.L., et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74 (2012), 361–373.
-
(2012)
Neuron
, vol.74
, pp. 361-373
-
-
Chen, J.L.1
-
35
-
-
84860274203
-
Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity
-
35 van Versendaal, D., et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74 (2012), 374–383.
-
(2012)
Neuron
, vol.74
, pp. 374-383
-
-
van Versendaal, D.1
-
36
-
-
33846798025
-
Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents
-
36 Kubota, Y., et al. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J. Neurosci. 27 (2007), 1139–1150.
-
(2007)
J. Neurosci.
, vol.27
, pp. 1139-1150
-
-
Kubota, Y.1
-
37
-
-
84958121334
-
Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo
-
37 Villa, K.L., et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89 (2016), 756–769.
-
(2016)
Neuron
, vol.89
, pp. 756-769
-
-
Villa, K.L.1
-
38
-
-
84877627153
-
Compartmentalization of GABAergic inhibition by dendritic spines
-
38 Chiu, C.Q., et al. Compartmentalization of GABAergic inhibition by dendritic spines. Science 340 (2013), 759–762.
-
(2013)
Science
, vol.340
, pp. 759-762
-
-
Chiu, C.Q.1
-
39
-
-
84904976730
-
Equalizing excitation–inhibition ratios across visual cortical neurons
-
39 Xue, M., et al. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511 (2014), 596–600.
-
(2014)
Nature
, vol.511
, pp. 596-600
-
-
Xue, M.1
-
40
-
-
0037061693
-
Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice
-
40 Knott, G.W., et al. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34 (2002), 265–273.
-
(2002)
Neuron
, vol.34
, pp. 265-273
-
-
Knott, G.W.1
-
41
-
-
84884900346
-
2+ signaling
-
2+ signaling. Nat. Neurosci. 16 (2013), 1409–1416.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1409-1416
-
-
Hayama, T.1
-
42
-
-
33644853801
-
Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex
-
42 De Paola, V., et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49 (2006), 861–875.
-
(2006)
Neuron
, vol.49
, pp. 861-875
-
-
De Paola, V.1
-
43
-
-
33644864762
-
Axons and synaptic boutons are highly dynamic in adult visual cortex
-
43 Stettler, D.D., et al. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49 (2006), 877–887.
-
(2006)
Neuron
, vol.49
, pp. 877-887
-
-
Stettler, D.D.1
-
44
-
-
71149103007
-
Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex
-
44 Yamahachi, H., et al. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64 (2009), 719–729.
-
(2009)
Neuron
, vol.64
, pp. 719-729
-
-
Yamahachi, H.1
-
45
-
-
77954693874
-
Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex
-
45 Marik, S.A., et al. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol., 8, 2010, e1000395.
-
(2010)
PLoS Biol.
, vol.8
, pp. e1000395
-
-
Marik, S.A.1
-
46
-
-
79955484822
-
Structural basis for the role of inhibition in facilitating adult brain plasticity
-
46 Chen, J.L., et al. Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat. Neurosci. 14 (2011), 587–594.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 587-594
-
-
Chen, J.L.1
-
47
-
-
84877294805
-
The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning
-
47 Carrillo, J., et al. The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning. J. Neurosci. 33 (2013), 8301–8307.
-
(2013)
J. Neurosci.
, vol.33
, pp. 8301-8307
-
-
Carrillo, J.1
-
48
-
-
84893084786
-
Large-scale axonal reorganization of inhibitory neurons following retinal lesions
-
48 Marik, S.A., et al. Large-scale axonal reorganization of inhibitory neurons following retinal lesions. J. Neurosci. 34 (2014), 1625–1632.
-
(2014)
J. Neurosci.
, vol.34
, pp. 1625-1632
-
-
Marik, S.A.1
-
49
-
-
84938408154
-
Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning
-
49 Chen, S.X., et al. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18 (2015), 1109–1115.
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 1109-1115
-
-
Chen, S.X.1
-
50
-
-
23944511446
-
Adaptation to synaptic inactivity in hippocampal neurons
-
50 Thiagarajan, T.C., et al. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47 (2005), 725–737.
-
(2005)
Neuron
, vol.47
, pp. 725-737
-
-
Thiagarajan, T.C.1
-
51
-
-
79956316684
-
Homeostatic synaptic plasticity through changes in presynaptic calcium influx
-
51 Zhao, C., et al. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31 (2011), 7492–7496.
-
(2011)
J. Neurosci.
, vol.31
, pp. 7492-7496
-
-
Zhao, C.1
-
52
-
-
77953927331
-
Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability
-
52 Grubb, M.S., Burrone, J., Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465 (2010), 1070–1074.
-
(2010)
Nature
, vol.465
, pp. 1070-1074
-
-
Grubb, M.S.1
Burrone, J.2
-
53
-
-
77953923017
-
+ channel distribution at the axon initial segment
-
+ channel distribution at the axon initial segment. Nature 465 (2010), 1075–1078.
-
(2010)
Nature
, vol.465
, pp. 1075-1078
-
-
Kuba, H.1
-
54
-
-
38649083179
-
Action potential generation requires a high sodium channel density in the axon initial segment
-
54 Kole, M.H.P., et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11 (2008), 178–186.
-
(2008)
Nat. Neurosci.
, vol.11
, pp. 178-186
-
-
Kole, M.H.P.1
-
55
-
-
84874632857
-
+ flux and spike initiation in axon initial segment
-
+ flux and spike initiation in axon initial segment. Proc. Natl Acad. Sci. U.S.A. 110 (2013), 4051–4056.
-
(2013)
Proc. Natl Acad. Sci. U.S.A.
, vol.110
, pp. 4051-4056
-
-
Baranauskas, G.1
-
56
-
-
84862678628
-
The physiology of the axon initial segment
-
56 Bender, K.J., Trussell, L.O., The physiology of the axon initial segment. Annu. Rev. Neurosci. 35 (2012), 249–265.
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 249-265
-
-
Bender, K.J.1
Trussell, L.O.2
-
57
-
-
84876277547
-
Calcineurin signaling mediates activity-dependent relocation of the axon initial segment
-
57 Evans, M.D., et al. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J. Neurosci. 33 (2013), 6950–6963.
-
(2013)
J. Neurosci.
, vol.33
, pp. 6950-6963
-
-
Evans, M.D.1
-
58
-
-
84902302947
-
A receptor diffusion dynamics at the axon initial segment
-
A receptor diffusion dynamics at the axon initial segment. Front. Cell. Neurosci., 8, 2014, 151.
-
(2014)
Front. Cell. Neurosci.
, vol.8
, pp. 151
-
-
Muir, J.1
Kittler, J.T.2
-
59
-
-
84938613444
-
Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output
-
59 Wefelmeyer, W., et al. Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 9757–9762.
-
(2015)
Proc. Natl Acad. Sci. U.S.A.
, vol.112
, pp. 9757-9762
-
-
Wefelmeyer, W.1
-
60
-
-
85019538610
-
Neuron morphology influences axon initial segment plasticity
-
Published online February 13, 2016
-
60 Gulledge, A.T., Bravo, J.J., Neuron morphology influences axon initial segment plasticity. eNeuro, 2016, 10.1523/ENEURO.0085-15.2016 Published online February 13, 2016.
-
(2016)
eNeuro
-
-
Gulledge, A.T.1
Bravo, J.J.2
-
61
-
-
84929359355
-
Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability
-
61 Hamada, M.S., Kole, M.H.P., Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J. Neurosci. 35 (2015), 7272–7286.
-
(2015)
J. Neurosci.
, vol.35
, pp. 7272-7286
-
-
Hamada, M.S.1
Kole, M.H.P.2
-
62
-
-
84899492875
-
Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex
-
62 Tomassy, G.S., et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344 (2014), 319–324.
-
(2014)
Science
, vol.344
, pp. 319-324
-
-
Tomassy, G.S.1
-
63
-
-
84921903236
-
A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment
-
63 Chand, A.N., et al. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J. Neurosci. 35 (2015), 1573–1590.
-
(2015)
J. Neurosci.
, vol.35
, pp. 1573-1590
-
-
Chand, A.N.1
-
64
-
-
84896729000
-
The chandelier cell, form and function
-
64 Inan, M., Anderson, S.A., The chandelier cell, form and function. Curr. Opin. Neurobiol. 26 (2014), 142–148.
-
(2014)
Curr. Opin. Neurobiol.
, vol.26
, pp. 142-148
-
-
Inan, M.1
Anderson, S.A.2
-
65
-
-
79957849782
-
Depolarizing effect of neocortical chandelier neurons
-
65 Woodruff, A., et al. Depolarizing effect of neocortical chandelier neurons. Front. Neural Circuits, 3, 2009, 15.
-
(2009)
Front. Neural Circuits
, vol.3
, pp. 15
-
-
Woodruff, A.1
-
66
-
-
83055185665
-
State-dependent function of neocortical chandelier cells
-
66 Woodruff, A.R., et al. State-dependent function of neocortical chandelier cells. J. Neurosci. 31 (2011), 17872–17886.
-
(2011)
J. Neurosci.
, vol.31
, pp. 17872-17886
-
-
Woodruff, A.R.1
-
67
-
-
84871921706
-
The spatial and temporal origin of chandelier cells in mouse neocortex
-
67 Taniguchi, H., et al. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339 (2012), 70–74.
-
(2012)
Science
, vol.339
, pp. 70-74
-
-
Taniguchi, H.1
-
68
-
-
33745712893
-
Variability, compensation and homeostasis in neuron and network function
-
68 Marder, E., Goaillard, J-M., Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7 (2006), 563–574.
-
(2006)
Nat. Rev. Neurosci.
, vol.7
, pp. 563-574
-
-
Marder, E.1
Goaillard, J.-M.2
-
69
-
-
27944485730
-
Opinion: an integrated approach to classifying neuronal phenotypes
-
69 Migliore, M., Shepherd, G.M., Opinion: an integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci. 6 (2005), 810–818.
-
(2005)
Nat. Rev. Neurosci.
, vol.6
, pp. 810-818
-
-
Migliore, M.1
Shepherd, G.M.2
-
70
-
-
45749115353
-
Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex
-
70 Petilla Interneuron Nomenclature Group, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9 (2008), 557–568.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, pp. 557-568
-
-
Petilla Interneuron Nomenclature Group1
-
71
-
-
39449125245
-
Pyramidal neurons: dendritic structure and synaptic integration
-
71 Spruston, N., Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9 (2008), 206–221.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, pp. 206-221
-
-
Spruston, N.1
-
72
-
-
84900558583
-
Spatiotemporal dynamics of dendritic spines in the living brain
-
72 Chen, C-C., et al. Spatiotemporal dynamics of dendritic spines in the living brain. Front. Neuroanat., 8, 2014, 28.
-
(2014)
Front. Neuroanat.
, vol.8
, pp. 28
-
-
Chen, C.-C.1
-
73
-
-
0037180796
-
Long-term dendritic spine stability in the adult cortex
-
73 Grutzendler, J., et al. Long-term dendritic spine stability in the adult cortex. Nature 420 (2002), 812–816.
-
(2002)
Nature
, vol.420
, pp. 812-816
-
-
Grutzendler, J.1
-
74
-
-
84938495582
-
Impermanence of dendritic spines in live adult CA1 hippocampus
-
74 Attardo, A., et al. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523 (2015), 592–596.
-
(2015)
Nature
, vol.523
, pp. 592-596
-
-
Attardo, A.1
-
75
-
-
17444373481
-
Development of long-term dendritic spine stability in diverse regions of cerebral cortex
-
75 Zuo, Y., et al. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46 (2005), 181–189.
-
(2005)
Neuron
, vol.46
, pp. 181-189
-
-
Zuo, Y.1
-
76
-
-
84874642887
-
Altered synaptic dynamics during normal brain aging
-
76 Mostany, R., et al. Altered synaptic dynamics during normal brain aging. J. Neurosci. 33 (2013), 4094–4104.
-
(2013)
J. Neurosci.
, vol.33
, pp. 4094-4104
-
-
Mostany, R.1
-
77
-
-
84901599559
-
A unique ion channel clustering domain on the axon initial segment of mammalian neurons
-
77 King, A.N., et al. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J. Comp. Neurol. 522 (2014), 2594–2608.
-
(2014)
J. Comp. Neurol.
, vol.522
, pp. 2594-2608
-
-
King, A.N.1
-
78
-
-
84872796017
-
Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
-
78 Xu, K., et al. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339 (2013), 452–456.
-
(2013)
Science
, vol.339
, pp. 452-456
-
-
Xu, K.1
-
79
-
-
84924619572
-
STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons
-
79 D'Este, E., et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10 (2015), 1246–1251.
-
(2015)
Cell Rep.
, vol.10
, pp. 1246-1251
-
-
D'Este, E.1
-
80
-
-
84996486097
-
Developmental mechanism of the periodic membrane skeleton in axons
-
Published online December 23, 2014
-
80 Zhong, G., et al. Developmental mechanism of the periodic membrane skeleton in axons. Elife, 2014, 10.7554/eLife.04581 Published online December 23, 2014.
-
(2014)
Elife
-
-
Zhong, G.1
-
81
-
-
84959410502
-
Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold
-
81 Leterrier, C., et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep. 13 (2015), 2781–2793.
-
(2015)
Cell Rep.
, vol.13
, pp. 2781-2793
-
-
Leterrier, C.1
|