메뉴 건너뛰기




Volumn 39, Issue 10, 2016, Pages 656-667

Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs

Author keywords

axon initial segment; dendritic spines; homeostatic plasticity; presynaptic terminals; structural plasticity

Indexed keywords

AXON; CELL STRUCTURE; DENDRITIC SPINE; EXCITATION; HOMEOSTASIS; MOLECULAR STABILITY; NERVE CELL PLASTICITY; NONHUMAN; POSTSYNAPTIC POTENTIAL; PRESYNAPTIC NERVE; PRIORITY JOURNAL; REVIEW; SYNAPSE; ANIMAL; HUMAN; NERVE CELL; PHYSIOLOGY; PYRAMIDAL NERVE CELL;

EID: 84989170601     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2016.08.004     Document Type: Review
Times cited : (80)

References (81)
  • 1
    • 0003779174 scopus 로고
    • Histology of the Nervous System of Man and Vertebrates
    • 1st edn Oxford University Press
    • 1 Cajal, S.R.Y., Swanson, N., Histology of the Nervous System of Man and Vertebrates. 1st edn, 1995, Oxford University Press.
    • (1995)
    • Cajal, S.R.Y.1    Swanson, N.2
  • 2
    • 0035088694 scopus 로고    scopus 로고
    • How do dendrites take their shape?
    • 2 Scott, E.K., Luo, L., How do dendrites take their shape?. Nat. Neurosci. 4 (2001), 359–365.
    • (2001) Nat. Neurosci. , vol.4 , pp. 359-365
    • Scott, E.K.1    Luo, L.2
  • 3
    • 1842782507 scopus 로고    scopus 로고
    • Information processing in the axon
    • 3 Debanne, D., Information processing in the axon. Nat. Rev. Neurosci. 5 (2004), 304–316.
    • (2004) Nat. Rev. Neurosci. , vol.5 , pp. 304-316
    • Debanne, D.1
  • 4
    • 4444241360 scopus 로고    scopus 로고
    • Synaptic connectivity and neuronal morphology: two sides of the same coin
    • 4 Chklovskii, D.B., Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43 (2004), 609–617.
    • (2004) Neuron , vol.43 , pp. 609-617
    • Chklovskii, D.B.1
  • 5
    • 69249100460 scopus 로고    scopus 로고
    • Experience-dependent structural synaptic plasticity in the mammalian brain
    • 5 Holtmaat, A., Svoboda, K., Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10 (2009), 647–658.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 647-658
    • Holtmaat, A.1    Svoboda, K.2
  • 6
    • 84862628165 scopus 로고    scopus 로고
    • Structural plasticity upon learning: regulation and functions
    • 6 Caroni, P., et al. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13 (2012), 478–490.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 478-490
    • Caroni, P.1
  • 7
    • 77949273382 scopus 로고    scopus 로고
    • Structural dynamics of dendritic spines in memory and cognition
    • 7 Kasai, H., et al. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33 (2010), 121–129.
    • (2010) Trends Neurosci. , vol.33 , pp. 121-129
    • Kasai, H.1
  • 8
    • 55049136860 scopus 로고    scopus 로고
    • Strength through diversity
    • 8 Nelson, S.B., Turrigiano, G.G., Strength through diversity. Neuron 60 (2008), 477–482.
    • (2008) Neuron , vol.60 , pp. 477-482
    • Nelson, S.B.1    Turrigiano, G.G.2
  • 9
    • 84863888017 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function
    • 9 Turrigiano, G., Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol., 4, 2012, a005736.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4 , pp. a005736
    • Turrigiano, G.1
  • 10
    • 0024473444 scopus 로고
    • Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics
    • 10 Harris, K.M., Stevens, J.K., Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9 (1989), 2982–2997.
    • (1989) J. Neurosci. , vol.9 , pp. 2982-2997
    • Harris, K.M.1    Stevens, J.K.2
  • 11
    • 0035923749 scopus 로고    scopus 로고
    • Inactivity produces increases in neurotransmitter release and synapse size
    • 11 Murthy, V.N., et al. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32 (2001), 673–682.
    • (2001) Neuron , vol.32 , pp. 673-682
    • Murthy, V.N.1
  • 12
    • 79960837954 scopus 로고    scopus 로고
    • Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation
    • 12 Kay, L., et al. Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation. Nat. Neurosci. 14 (2011), 688–690.
    • (2011) Nat. Neurosci. , vol.14 , pp. 688-690
    • Kay, L.1
  • 13
    • 78650756374 scopus 로고    scopus 로고
    • Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity
    • 13 Lindskog, M., et al. Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity. Proc. Natl Acad. Sci. U.S.A. 107 (2010), 21806–21811.
    • (2010) Proc. Natl Acad. Sci. U.S.A. , vol.107 , pp. 21806-21811
    • Lindskog, M.1
  • 14
    • 75349111698 scopus 로고    scopus 로고
    • Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex
    • 14 Hardingham, N.R., et al. Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J. Neurosci. 30 (2010), 1441–1451.
    • (2010) J. Neurosci. , vol.30 , pp. 1441-1451
    • Hardingham, N.R.1
  • 15
    • 54549119477 scopus 로고    scopus 로고
    • Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses
    • 15 Tokuoka, H., Goda, Y., Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses. Proc. Natl Acad. Sci. U.S.A. 105 (2008), 14656–14661.
    • (2008) Proc. Natl Acad. Sci. U.S.A. , vol.105 , pp. 14656-14661
    • Tokuoka, H.1    Goda, Y.2
  • 16
    • 80052411410 scopus 로고    scopus 로고
    • Dendritic spines and distributed circuits
    • 16 Yuste, R., Dendritic spines and distributed circuits. Neuron 71 (2011), 772–781.
    • (2011) Neuron , vol.71 , pp. 772-781
    • Yuste, R.1
  • 17
    • 84890480079 scopus 로고    scopus 로고
    • Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites
    • 17 Menon, V., et al. Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron 80 (2013), 1451–1463.
    • (2013) Neuron , vol.80 , pp. 1451-1463
    • Menon, V.1
  • 18
    • 0037180832 scopus 로고    scopus 로고
    • Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex
    • 18 Trachtenberg, J.T., et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420 (2002), 788–794.
    • (2002) Nature , vol.420 , pp. 788-794
    • Trachtenberg, J.T.1
  • 19
    • 58249103964 scopus 로고    scopus 로고
    • Experience leaves a lasting structural trace in cortical circuits
    • 19 Hofer, S.B., et al. Experience leaves a lasting structural trace in cortical circuits. Nature 457 (2009), 313–317.
    • (2009) Nature , vol.457 , pp. 313-317
    • Hofer, S.B.1
  • 20
    • 29444437856 scopus 로고    scopus 로고
    • Prior experience enhances plasticity in adult visual cortex
    • 20 Hofer, S.B., et al. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9 (2006), 127–132.
    • (2006) Nat. Neurosci. , vol.9 , pp. 127-132
    • Hofer, S.B.1
  • 21
    • 0038198695 scopus 로고    scopus 로고
    • NMDA receptor-dependent ocular dominance plasticity in adult visual cortex
    • 21 Sawtell, N.B., et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38 (2003), 977–985.
    • (2003) Neuron , vol.38 , pp. 977-985
    • Sawtell, N.B.1
  • 22
    • 0032567928 scopus 로고    scopus 로고
    • Activity-dependent scaling of quantal amplitude in neocortical neurons
    • 22 Turrigiano, G.G., et al. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 (1998), 892–896.
    • (1998) Nature , vol.391 , pp. 892-896
    • Turrigiano, G.G.1
  • 23
    • 0035708355 scopus 로고    scopus 로고
    • Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons
    • 23 Matsuzaki, M., et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4 (2001), 1086–1092.
    • (2001) Nat. Neurosci. , vol.4 , pp. 1086-1092
    • Matsuzaki, M.1
  • 24
    • 33845883324 scopus 로고    scopus 로고
    • Synapse-specific regulation of AMPA receptor function by PSD-95
    • 24 Béïque, J-C., et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl Acad. Sci. U.S.A. 103 (2006), 19535–19540.
    • (2006) Proc. Natl Acad. Sci. U.S.A. , vol.103 , pp. 19535-19540
    • Béïque, J.-C.1
  • 25
    • 58849093289 scopus 로고    scopus 로고
    • Rapid functional maturation of nascent dendritic spines
    • 25 Zito, K., et al. Rapid functional maturation of nascent dendritic spines. Neuron 61 (2009), 247–258.
    • (2009) Neuron , vol.61 , pp. 247-258
    • Zito, K.1
  • 26
    • 84885734405 scopus 로고    scopus 로고
    • Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
    • 26 Keck, T., et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80 (2013), 327–334.
    • (2013) Neuron , vol.80 , pp. 327-334
    • Keck, T.1
  • 27
    • 47849090741 scopus 로고    scopus 로고
    • Two opposing plasticity mechanisms pulling a single synapse
    • 27 Rabinowitch, I., Segev, I., Two opposing plasticity mechanisms pulling a single synapse. Trends Neurosci. 31 (2008), 377–383.
    • (2008) Trends Neurosci. , vol.31 , pp. 377-383
    • Rabinowitch, I.1    Segev, I.2
  • 28
    • 48749086302 scopus 로고    scopus 로고
    • Local dendritic activity sets release probability at hippocampal synapses
    • 28 Branco, T., et al. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59 (2008), 475–485.
    • (2008) Neuron , vol.59 , pp. 475-485
    • Branco, T.1
  • 29
    • 38649142116 scopus 로고    scopus 로고
    • Homeostatic regulation of AMPA receptor expression at single hippocampal synapses
    • 29 Hou, Q., et al. Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. Proc. Natl Acad. Sci. U.S.A. 105 (2008), 775–780.
    • (2008) Proc. Natl Acad. Sci. U.S.A. , vol.105 , pp. 775-780
    • Hou, Q.1
  • 30
    • 80052396435 scopus 로고    scopus 로고
    • Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex
    • 30 Keck, T., et al. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71 (2011), 869–882.
    • (2011) Neuron , vol.71 , pp. 869-882
    • Keck, T.1
  • 31
    • 52949133401 scopus 로고    scopus 로고
    • Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex
    • 31 Keck, T., et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11 (2008), 1162–1167.
    • (2008) Nat. Neurosci. , vol.11 , pp. 1162-1167
    • Keck, T.1
  • 32
    • 33745562839 scopus 로고    scopus 로고
    • Experience-dependent and cell-type-specific spine growth in the neocortex
    • 32 Holtmaat, A., et al. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441 (2006), 979–983.
    • (2006) Nature , vol.441 , pp. 979-983
    • Holtmaat, A.1
  • 33
    • 84879270670 scopus 로고    scopus 로고
    • Recombinant probes for visualizing endogenous synaptic proteins in living neurons
    • 33 Gross, G.G., et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78 (2013), 971–985.
    • (2013) Neuron , vol.78 , pp. 971-985
    • Gross, G.G.1
  • 34
    • 84860274120 scopus 로고    scopus 로고
    • Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex
    • 34 Chen, J.L., et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74 (2012), 361–373.
    • (2012) Neuron , vol.74 , pp. 361-373
    • Chen, J.L.1
  • 35
    • 84860274203 scopus 로고    scopus 로고
    • Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity
    • 35 van Versendaal, D., et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74 (2012), 374–383.
    • (2012) Neuron , vol.74 , pp. 374-383
    • van Versendaal, D.1
  • 36
    • 33846798025 scopus 로고    scopus 로고
    • Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents
    • 36 Kubota, Y., et al. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J. Neurosci. 27 (2007), 1139–1150.
    • (2007) J. Neurosci. , vol.27 , pp. 1139-1150
    • Kubota, Y.1
  • 37
    • 84958121334 scopus 로고    scopus 로고
    • Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo
    • 37 Villa, K.L., et al. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89 (2016), 756–769.
    • (2016) Neuron , vol.89 , pp. 756-769
    • Villa, K.L.1
  • 38
    • 84877627153 scopus 로고    scopus 로고
    • Compartmentalization of GABAergic inhibition by dendritic spines
    • 38 Chiu, C.Q., et al. Compartmentalization of GABAergic inhibition by dendritic spines. Science 340 (2013), 759–762.
    • (2013) Science , vol.340 , pp. 759-762
    • Chiu, C.Q.1
  • 39
    • 84904976730 scopus 로고    scopus 로고
    • Equalizing excitation–inhibition ratios across visual cortical neurons
    • 39 Xue, M., et al. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511 (2014), 596–600.
    • (2014) Nature , vol.511 , pp. 596-600
    • Xue, M.1
  • 40
    • 0037061693 scopus 로고    scopus 로고
    • Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice
    • 40 Knott, G.W., et al. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34 (2002), 265–273.
    • (2002) Neuron , vol.34 , pp. 265-273
    • Knott, G.W.1
  • 41
    • 84884900346 scopus 로고    scopus 로고
    • 2+ signaling
    • 2+ signaling. Nat. Neurosci. 16 (2013), 1409–1416.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1409-1416
    • Hayama, T.1
  • 42
    • 33644853801 scopus 로고    scopus 로고
    • Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex
    • 42 De Paola, V., et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49 (2006), 861–875.
    • (2006) Neuron , vol.49 , pp. 861-875
    • De Paola, V.1
  • 43
    • 33644864762 scopus 로고    scopus 로고
    • Axons and synaptic boutons are highly dynamic in adult visual cortex
    • 43 Stettler, D.D., et al. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49 (2006), 877–887.
    • (2006) Neuron , vol.49 , pp. 877-887
    • Stettler, D.D.1
  • 44
    • 71149103007 scopus 로고    scopus 로고
    • Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex
    • 44 Yamahachi, H., et al. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64 (2009), 719–729.
    • (2009) Neuron , vol.64 , pp. 719-729
    • Yamahachi, H.1
  • 45
    • 77954693874 scopus 로고    scopus 로고
    • Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex
    • 45 Marik, S.A., et al. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol., 8, 2010, e1000395.
    • (2010) PLoS Biol. , vol.8 , pp. e1000395
    • Marik, S.A.1
  • 46
    • 79955484822 scopus 로고    scopus 로고
    • Structural basis for the role of inhibition in facilitating adult brain plasticity
    • 46 Chen, J.L., et al. Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat. Neurosci. 14 (2011), 587–594.
    • (2011) Nat. Neurosci. , vol.14 , pp. 587-594
    • Chen, J.L.1
  • 47
    • 84877294805 scopus 로고    scopus 로고
    • The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning
    • 47 Carrillo, J., et al. The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning. J. Neurosci. 33 (2013), 8301–8307.
    • (2013) J. Neurosci. , vol.33 , pp. 8301-8307
    • Carrillo, J.1
  • 48
    • 84893084786 scopus 로고    scopus 로고
    • Large-scale axonal reorganization of inhibitory neurons following retinal lesions
    • 48 Marik, S.A., et al. Large-scale axonal reorganization of inhibitory neurons following retinal lesions. J. Neurosci. 34 (2014), 1625–1632.
    • (2014) J. Neurosci. , vol.34 , pp. 1625-1632
    • Marik, S.A.1
  • 49
    • 84938408154 scopus 로고    scopus 로고
    • Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning
    • 49 Chen, S.X., et al. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18 (2015), 1109–1115.
    • (2015) Nat. Neurosci. , vol.18 , pp. 1109-1115
    • Chen, S.X.1
  • 50
    • 23944511446 scopus 로고    scopus 로고
    • Adaptation to synaptic inactivity in hippocampal neurons
    • 50 Thiagarajan, T.C., et al. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47 (2005), 725–737.
    • (2005) Neuron , vol.47 , pp. 725-737
    • Thiagarajan, T.C.1
  • 51
    • 79956316684 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity through changes in presynaptic calcium influx
    • 51 Zhao, C., et al. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31 (2011), 7492–7496.
    • (2011) J. Neurosci. , vol.31 , pp. 7492-7496
    • Zhao, C.1
  • 52
    • 77953927331 scopus 로고    scopus 로고
    • Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability
    • 52 Grubb, M.S., Burrone, J., Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465 (2010), 1070–1074.
    • (2010) Nature , vol.465 , pp. 1070-1074
    • Grubb, M.S.1    Burrone, J.2
  • 53
    • 77953923017 scopus 로고    scopus 로고
    • + channel distribution at the axon initial segment
    • + channel distribution at the axon initial segment. Nature 465 (2010), 1075–1078.
    • (2010) Nature , vol.465 , pp. 1075-1078
    • Kuba, H.1
  • 54
    • 38649083179 scopus 로고    scopus 로고
    • Action potential generation requires a high sodium channel density in the axon initial segment
    • 54 Kole, M.H.P., et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11 (2008), 178–186.
    • (2008) Nat. Neurosci. , vol.11 , pp. 178-186
    • Kole, M.H.P.1
  • 55
    • 84874632857 scopus 로고    scopus 로고
    • + flux and spike initiation in axon initial segment
    • + flux and spike initiation in axon initial segment. Proc. Natl Acad. Sci. U.S.A. 110 (2013), 4051–4056.
    • (2013) Proc. Natl Acad. Sci. U.S.A. , vol.110 , pp. 4051-4056
    • Baranauskas, G.1
  • 56
    • 84862678628 scopus 로고    scopus 로고
    • The physiology of the axon initial segment
    • 56 Bender, K.J., Trussell, L.O., The physiology of the axon initial segment. Annu. Rev. Neurosci. 35 (2012), 249–265.
    • (2012) Annu. Rev. Neurosci. , vol.35 , pp. 249-265
    • Bender, K.J.1    Trussell, L.O.2
  • 57
    • 84876277547 scopus 로고    scopus 로고
    • Calcineurin signaling mediates activity-dependent relocation of the axon initial segment
    • 57 Evans, M.D., et al. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J. Neurosci. 33 (2013), 6950–6963.
    • (2013) J. Neurosci. , vol.33 , pp. 6950-6963
    • Evans, M.D.1
  • 58
    • 84902302947 scopus 로고    scopus 로고
    • A receptor diffusion dynamics at the axon initial segment
    • A receptor diffusion dynamics at the axon initial segment. Front. Cell. Neurosci., 8, 2014, 151.
    • (2014) Front. Cell. Neurosci. , vol.8 , pp. 151
    • Muir, J.1    Kittler, J.T.2
  • 59
    • 84938613444 scopus 로고    scopus 로고
    • Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output
    • 59 Wefelmeyer, W., et al. Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 9757–9762.
    • (2015) Proc. Natl Acad. Sci. U.S.A. , vol.112 , pp. 9757-9762
    • Wefelmeyer, W.1
  • 60
    • 85019538610 scopus 로고    scopus 로고
    • Neuron morphology influences axon initial segment plasticity
    • Published online February 13, 2016
    • 60 Gulledge, A.T., Bravo, J.J., Neuron morphology influences axon initial segment plasticity. eNeuro, 2016, 10.1523/ENEURO.0085-15.2016 Published online February 13, 2016.
    • (2016) eNeuro
    • Gulledge, A.T.1    Bravo, J.J.2
  • 61
    • 84929359355 scopus 로고    scopus 로고
    • Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability
    • 61 Hamada, M.S., Kole, M.H.P., Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J. Neurosci. 35 (2015), 7272–7286.
    • (2015) J. Neurosci. , vol.35 , pp. 7272-7286
    • Hamada, M.S.1    Kole, M.H.P.2
  • 62
    • 84899492875 scopus 로고    scopus 로고
    • Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex
    • 62 Tomassy, G.S., et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344 (2014), 319–324.
    • (2014) Science , vol.344 , pp. 319-324
    • Tomassy, G.S.1
  • 63
    • 84921903236 scopus 로고    scopus 로고
    • A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment
    • 63 Chand, A.N., et al. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J. Neurosci. 35 (2015), 1573–1590.
    • (2015) J. Neurosci. , vol.35 , pp. 1573-1590
    • Chand, A.N.1
  • 64
    • 84896729000 scopus 로고    scopus 로고
    • The chandelier cell, form and function
    • 64 Inan, M., Anderson, S.A., The chandelier cell, form and function. Curr. Opin. Neurobiol. 26 (2014), 142–148.
    • (2014) Curr. Opin. Neurobiol. , vol.26 , pp. 142-148
    • Inan, M.1    Anderson, S.A.2
  • 65
    • 79957849782 scopus 로고    scopus 로고
    • Depolarizing effect of neocortical chandelier neurons
    • 65 Woodruff, A., et al. Depolarizing effect of neocortical chandelier neurons. Front. Neural Circuits, 3, 2009, 15.
    • (2009) Front. Neural Circuits , vol.3 , pp. 15
    • Woodruff, A.1
  • 66
    • 83055185665 scopus 로고    scopus 로고
    • State-dependent function of neocortical chandelier cells
    • 66 Woodruff, A.R., et al. State-dependent function of neocortical chandelier cells. J. Neurosci. 31 (2011), 17872–17886.
    • (2011) J. Neurosci. , vol.31 , pp. 17872-17886
    • Woodruff, A.R.1
  • 67
    • 84871921706 scopus 로고    scopus 로고
    • The spatial and temporal origin of chandelier cells in mouse neocortex
    • 67 Taniguchi, H., et al. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339 (2012), 70–74.
    • (2012) Science , vol.339 , pp. 70-74
    • Taniguchi, H.1
  • 68
    • 33745712893 scopus 로고    scopus 로고
    • Variability, compensation and homeostasis in neuron and network function
    • 68 Marder, E., Goaillard, J-M., Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7 (2006), 563–574.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 563-574
    • Marder, E.1    Goaillard, J.-M.2
  • 69
    • 27944485730 scopus 로고    scopus 로고
    • Opinion: an integrated approach to classifying neuronal phenotypes
    • 69 Migliore, M., Shepherd, G.M., Opinion: an integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci. 6 (2005), 810–818.
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 810-818
    • Migliore, M.1    Shepherd, G.M.2
  • 70
    • 45749115353 scopus 로고    scopus 로고
    • Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex
    • 70 Petilla Interneuron Nomenclature Group, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9 (2008), 557–568.
    • (2008) Nat. Rev. Neurosci. , vol.9 , pp. 557-568
    • Petilla Interneuron Nomenclature Group1
  • 71
    • 39449125245 scopus 로고    scopus 로고
    • Pyramidal neurons: dendritic structure and synaptic integration
    • 71 Spruston, N., Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9 (2008), 206–221.
    • (2008) Nat. Rev. Neurosci. , vol.9 , pp. 206-221
    • Spruston, N.1
  • 72
    • 84900558583 scopus 로고    scopus 로고
    • Spatiotemporal dynamics of dendritic spines in the living brain
    • 72 Chen, C-C., et al. Spatiotemporal dynamics of dendritic spines in the living brain. Front. Neuroanat., 8, 2014, 28.
    • (2014) Front. Neuroanat. , vol.8 , pp. 28
    • Chen, C.-C.1
  • 73
    • 0037180796 scopus 로고    scopus 로고
    • Long-term dendritic spine stability in the adult cortex
    • 73 Grutzendler, J., et al. Long-term dendritic spine stability in the adult cortex. Nature 420 (2002), 812–816.
    • (2002) Nature , vol.420 , pp. 812-816
    • Grutzendler, J.1
  • 74
    • 84938495582 scopus 로고    scopus 로고
    • Impermanence of dendritic spines in live adult CA1 hippocampus
    • 74 Attardo, A., et al. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523 (2015), 592–596.
    • (2015) Nature , vol.523 , pp. 592-596
    • Attardo, A.1
  • 75
    • 17444373481 scopus 로고    scopus 로고
    • Development of long-term dendritic spine stability in diverse regions of cerebral cortex
    • 75 Zuo, Y., et al. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46 (2005), 181–189.
    • (2005) Neuron , vol.46 , pp. 181-189
    • Zuo, Y.1
  • 76
    • 84874642887 scopus 로고    scopus 로고
    • Altered synaptic dynamics during normal brain aging
    • 76 Mostany, R., et al. Altered synaptic dynamics during normal brain aging. J. Neurosci. 33 (2013), 4094–4104.
    • (2013) J. Neurosci. , vol.33 , pp. 4094-4104
    • Mostany, R.1
  • 77
    • 84901599559 scopus 로고    scopus 로고
    • A unique ion channel clustering domain on the axon initial segment of mammalian neurons
    • 77 King, A.N., et al. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J. Comp. Neurol. 522 (2014), 2594–2608.
    • (2014) J. Comp. Neurol. , vol.522 , pp. 2594-2608
    • King, A.N.1
  • 78
    • 84872796017 scopus 로고    scopus 로고
    • Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
    • 78 Xu, K., et al. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339 (2013), 452–456.
    • (2013) Science , vol.339 , pp. 452-456
    • Xu, K.1
  • 79
    • 84924619572 scopus 로고    scopus 로고
    • STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons
    • 79 D'Este, E., et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10 (2015), 1246–1251.
    • (2015) Cell Rep. , vol.10 , pp. 1246-1251
    • D'Este, E.1
  • 80
    • 84996486097 scopus 로고    scopus 로고
    • Developmental mechanism of the periodic membrane skeleton in axons
    • Published online December 23, 2014
    • 80 Zhong, G., et al. Developmental mechanism of the periodic membrane skeleton in axons. Elife, 2014, 10.7554/eLife.04581 Published online December 23, 2014.
    • (2014) Elife
    • Zhong, G.1
  • 81
    • 84959410502 scopus 로고    scopus 로고
    • Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold
    • 81 Leterrier, C., et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep. 13 (2015), 2781–2793.
    • (2015) Cell Rep. , vol.13 , pp. 2781-2793
    • Leterrier, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.