메뉴 건너뛰기




Volumn 33, Issue 6, 2016, Pages 868-873

Indole modifies the central carbon flux in the anaerobic metabolism of Escherichia coli: application to the production of hydrogen and other metabolites

Author keywords

Bacteriostatic; Escherichia coli; Ethanol; Hydrogen; Indole; Ionophore; Lactate

Indexed keywords

AEROBIC BACTERIA; BIOMOLECULES; CELL SIGNALING; ESCHERICHIA COLI; ETHANOL; HYDROGEN; IONOPHORES; METABOLISM; METABOLITES; PHYSIOLOGY; POLYCYCLIC AROMATIC HYDROCARBONS; SOLID SOLUTIONS;

EID: 84988933177     PISSN: 18716784     EISSN: 18764347     Source Type: Journal    
DOI: 10.1016/j.nbt.2016.09.005     Document Type: Article
Times cited : (1)

References (36)
  • 1
    • 13244289800 scopus 로고    scopus 로고
    • Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function
    • [1] Kang, Y.S., Weber, K.D., Yu, Q., Kiley, P.J., Blattner, F.R., Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187 (2005), 1135–1160.
    • (2005) J Bacteriol , vol.187 , pp. 1135-1160
    • Kang, Y.S.1    Weber, K.D.2    Yu, Q.3    Kiley, P.J.4    Blattner, F.R.5
  • 3
    • 84903646697 scopus 로고    scopus 로고
    • Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth
    • [3] Niu, D.D., Tian, K.M., Prior, B.A., Wang, M., Wang, Z.X., Lu, F.P., et al. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth. Microb Cell Fact, 13, 2014.
    • (2014) Microb Cell Fact , vol.13
    • Niu, D.D.1    Tian, K.M.2    Prior, B.A.3    Wang, M.4    Wang, Z.X.5    Lu, F.P.6
  • 4
    • 84933533873 scopus 로고    scopus 로고
    • Identification of enhanced hydrogen and ethanol Escherichia coli producer strains in a glycerol-based medium by screening in single-knock out mutant collections
    • [4] Valle, A., Cabrera, G., Cantero, D., Bolivar, J., Identification of enhanced hydrogen and ethanol Escherichia coli producer strains in a glycerol-based medium by screening in single-knock out mutant collections. Microb Cell Fact, 14, 2015, 93.
    • (2015) Microb Cell Fact , vol.14 , pp. 93
    • Valle, A.1    Cabrera, G.2    Cantero, D.3    Bolivar, J.4
  • 5
    • 84857206674 scopus 로고    scopus 로고
    • Hydrogen production by recombinant Escherichia coli strains
    • [5] Maeda, T., Sanchez-Torres, V., Wood, T.K., Hydrogen production by recombinant Escherichia coli strains. Microbiol Biotechnol 5 (2012), 214–225.
    • (2012) Microbiol Biotechnol , vol.5 , pp. 214-225
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 6
    • 84885130527 scopus 로고    scopus 로고
    • Maximizing hydrogen production and substrate consumption by Escherichia coli WDHL in cheese whey fermentation
    • [6] Rosales-Colunga, L.M., Alvarado-Cuevas, Z.D., Razo-Flores, E., Rodriguez, A.D., Maximizing hydrogen production and substrate consumption by Escherichia coli WDHL in cheese whey fermentation. Appl Biochem Biotechnol 171 (2013), 704–715.
    • (2013) Appl Biochem Biotechnol , vol.171 , pp. 704-715
    • Rosales-Colunga, L.M.1    Alvarado-Cuevas, Z.D.2    Razo-Flores, E.3    Rodriguez, A.D.4
  • 7
    • 84925507236 scopus 로고    scopus 로고
    • Escherichia coli and its application to biohydrogen production
    • [7] Rosales-Colunga, L.M., Rodriguez, A.D., Escherichia coli and its application to biohydrogen production. Rev Environ Sci Bio-Technol 14 (2015), 123–135.
    • (2015) Rev Environ Sci Bio-Technol , vol.14 , pp. 123-135
    • Rosales-Colunga, L.M.1    Rodriguez, A.D.2
  • 8
    • 84937154742 scopus 로고    scopus 로고
    • Hydrogen production from glycerol by Escherichia coli and other bacteria: an overview and perspectives
    • [8] Trchounian, K., Trchounian, A., Hydrogen production from glycerol by Escherichia coli and other bacteria: an overview and perspectives. Appl Energy 156 (2015), 174–184.
    • (2015) Appl Energy , vol.156 , pp. 174-184
    • Trchounian, K.1    Trchounian, A.2
  • 9
    • 0032108850 scopus 로고    scopus 로고
    • An overview of industrial uses of hydrogen
    • [9] Ramachandran, R., Menon, R.K., An overview of industrial uses of hydrogen. Int J Hydrogen Energy 23 (1998), 593–598.
    • (1998) Int J Hydrogen Energy , vol.23 , pp. 593-598
    • Ramachandran, R.1    Menon, R.K.2
  • 10
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: a review
    • [10] Wang, J.L., Wan, W., Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34 (2009), 799–811.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 799-811
    • Wang, J.L.1    Wan, W.2
  • 12
    • 84858753117 scopus 로고    scopus 로고
    • Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: impact on hydrogen production
    • [12] Rosales-Colunga, L.M., Razo-Flores, E., Rodriguez, A.D.L., Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: impact on hydrogen production. Bioresour Technol 111 (2012), 180–184.
    • (2012) Bioresour Technol , vol.111 , pp. 180-184
    • Rosales-Colunga, L.M.1    Razo-Flores, E.2    Rodriguez, A.D.L.3
  • 13
    • 84871073594 scopus 로고    scopus 로고
    • Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium
    • [13] Fernandez-Sandoval, M.T., Huerta-Beristain, G., Trujillo-Martinez, B., Bustos, P., Gonzalez, V., Bolivar, F., et al. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96 (2012), 1291–1300.
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 1291-1300
    • Fernandez-Sandoval, M.T.1    Huerta-Beristain, G.2    Trujillo-Martinez, B.3    Bustos, P.4    Gonzalez, V.5    Bolivar, F.6
  • 14
    • 84944768959 scopus 로고    scopus 로고
    • Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation
    • [14] Loaces, I., Amarelle, V., Munoz-Gutierrez, I., Fabiano, E., Martinez, A., Noya, F., Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation. Appl Microbiol Biotechnol 99 (2015), 9049–9060.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 9049-9060
    • Loaces, I.1    Amarelle, V.2    Munoz-Gutierrez, I.3    Fabiano, E.4    Martinez, A.5    Noya, F.6
  • 15
    • 79955689552 scopus 로고    scopus 로고
    • Proliferation/quiescence: the controversial aller-retour
    • [15] Daignan-Fornier, B., Sagot, I., Proliferation/quiescence: the controversial aller-retour. Cell Div, 6, 2011, 10.
    • (2011) Cell Div , vol.6 , pp. 10
    • Daignan-Fornier, B.1    Sagot, I.2
  • 16
    • 0033009725 scopus 로고    scopus 로고
    • The quiescent-cell expression system for protein synthesis in Escherichia coli
    • [16] Rowe, D.C., Summers, D.K., The quiescent-cell expression system for protein synthesis in Escherichia coli. Appl Environ Microbiol 65 (1999), 2710–2715.
    • (1999) Appl Environ Microbiol , vol.65 , pp. 2710-2715
    • Rowe, D.C.1    Summers, D.K.2
  • 17
    • 84926157115 scopus 로고    scopus 로고
    • Indole generates quiescent and metabolically active Escherichia coli cultures
    • [17] Chen, C.C., Walia, R., Mukherjee, K.J., Mahalik, S., Summers, D.K., Indole generates quiescent and metabolically active Escherichia coli cultures. Biotechnol J 10 (2015), 636–646.
    • (2015) Biotechnol J , vol.10 , pp. 636-646
    • Chen, C.C.1    Walia, R.2    Mukherjee, K.J.3    Mahalik, S.4    Summers, D.K.5
  • 18
    • 79952103884 scopus 로고    scopus 로고
    • Environmental factors affecting indole production in Escherichia coli
    • [18] Han, T.H., Lee, J.H., Cho, M.H., Wood, T.K., Lee, J., Environmental factors affecting indole production in Escherichia coli. Res Microbiol 162 (2011), 108–116.
    • (2011) Res Microbiol , vol.162 , pp. 108-116
    • Han, T.H.1    Lee, J.H.2    Cho, M.H.3    Wood, T.K.4    Lee, J.5
  • 20
    • 84873837458 scopus 로고    scopus 로고
    • The effect of bacterial signal indole on the electrical properties of lipid membranes
    • [20] Chimerel, C., Murray, A.J., Oldewurtel, E.R., Summers, D.K., Keyser, U.F., The effect of bacterial signal indole on the electrical properties of lipid membranes. Chemphyschem 14 (2013), 417–423.
    • (2013) Chemphyschem , vol.14 , pp. 417-423
    • Chimerel, C.1    Murray, A.J.2    Oldewurtel, E.R.3    Summers, D.K.4    Keyser, U.F.5
  • 21
    • 84898846708 scopus 로고    scopus 로고
    • The indole pulse: a new perspective on indole signalling in Escherichia coli
    • [21] Gaimster, H., Cama, J., Hernandez-Ainsa, S., Keyser, U.F., Summers, D.K., The indole pulse: a new perspective on indole signalling in Escherichia coli. PLoS One, 9, 2014, e93168.
    • (2014) PLoS One , vol.9 , pp. e93168
    • Gaimster, H.1    Cama, J.2    Hernandez-Ainsa, S.3    Keyser, U.F.4    Summers, D.K.5
  • 22
    • 52049087851 scopus 로고    scopus 로고
    • Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH
    • [22] Davila-Vazquez, G., Alatriste-Mondragon, F., de Leon-Rodriguez, A., Razo-Flores, E., Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrogen Energy 33 (2008), 4989–4997.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 4989-4997
    • Davila-Vazquez, G.1    Alatriste-Mondragon, F.2    de Leon-Rodriguez, A.3    Razo-Flores, E.4
  • 23
    • 78651125831 scopus 로고
    • A micro method for detecting indol formation
    • [23] Kovacs, N., A micro method for detecting indol formation. J Clin Pathol, 12, 1959, 90.
    • (1959) J Clin Pathol , vol.12 , pp. 90
    • Kovacs, N.1
  • 24
    • 68949159910 scopus 로고    scopus 로고
    • Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth
    • [24] Kwon, Y.M., Weiss, B., Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 191 (2009), 5369–5376.
    • (2009) J Bacteriol , vol.191 , pp. 5369-5376
    • Kwon, Y.M.1    Weiss, B.2
  • 25
    • 84884207398 scopus 로고    scopus 로고
    • Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate
    • [25] Alvarado-Cuevas, Z.D., Acevedo, L.G.O., Salas, J.T.O., De Leon-Rodriguez, A., Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New Biotechnol 30 (2013), 585–590.
    • (2013) New Biotechnol , vol.30 , pp. 585-590
    • Alvarado-Cuevas, Z.D.1    Acevedo, L.G.O.2    Salas, J.T.O.3    De Leon-Rodriguez, A.4
  • 26
    • 27944487847 scopus 로고    scopus 로고
    • Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021
    • [26] Ferchichi, M., Crabbe, E., Hintz, W., Gil, G.H., Almadidy, A., Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21 (2005), 855–862.
    • (2005) World J Microbiol Biotechnol , vol.21 , pp. 855-862
    • Ferchichi, M.1    Crabbe, E.2    Hintz, W.3    Gil, G.H.4    Almadidy, A.5
  • 27
    • 84947811592 scopus 로고    scopus 로고
    • Regulation of indole signalling during the transition of E. coli from exponential to stationary phase
    • [27] Gaimster, H., Summers, D., Regulation of indole signalling during the transition of E. coli from exponential to stationary phase. PLoS One, 10, 2015.
    • (2015) PLoS One , vol.10
    • Gaimster, H.1    Summers, D.2
  • 28
    • 84873670839 scopus 로고    scopus 로고
    • Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan
    • [28] Li, G., Young, K.D., Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiol-Sgm 159 (2013), 402–410.
    • (2013) Microbiol-Sgm , vol.159 , pp. 402-410
    • Li, G.1    Young, K.D.2
  • 29
    • 32044471535 scopus 로고    scopus 로고
    • Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains
    • [29] Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., Yukawa, H., Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:11 (2005), 6762–6768.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.11 , pp. 6762-6768
    • Yoshida, A.1    Nishimura, T.2    Kawaguchi, H.3    Inui, M.4    Yukawa, H.5
  • 30
    • 84858753117 scopus 로고    scopus 로고
    • Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: impact on hydrogen production
    • [30] Rosales-Colunga, L.M., Razo-Flores, E., De Leon Rodriguez, A., Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: impact on hydrogen production. Bioresour Technol 111 (2012), 180–184.
    • (2012) Bioresour Technol , vol.111 , pp. 180-184
    • Rosales-Colunga, L.M.1    Razo-Flores, E.2    De Leon Rodriguez, A.3
  • 32
    • 0034741113 scopus 로고    scopus 로고
    • Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli
    • [32] Jiang, G.R.J., Nikolova, S., Clark, D.P., Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiol-Sgm 147 (2001), 2437–2446.
    • (2001) Microbiol-Sgm , vol.147 , pp. 2437-2446
    • Jiang, G.R.J.1    Nikolova, S.2    Clark, D.P.3
  • 34
    • 0025825737 scopus 로고
    • Genetic-improvement of Escherichia-coli for ethanol-production – chromosomal integration of zymomonas-mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase-Ii
    • [34] Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L.O., Genetic-improvement of Escherichia-coli for ethanol-production – chromosomal integration of zymomonas-mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase-Ii. Appl Environ Microbiol 57 (1991), 893–900.
    • (1991) Appl Environ Microbiol , vol.57 , pp. 893-900
    • Ohta, K.1    Beall, D.S.2    Mejia, J.P.3    Shanmugam, K.T.4    Ingram, L.O.5
  • 35
    • 84957727590 scopus 로고    scopus 로고
    • Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli – from embden-meyerhof-parnas pathway to pentose phosphate pathway
    • [35] Seol, E., Sekar, B.S., Raj, S.M., Park, S., Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli – from embden-meyerhof-parnas pathway to pentose phosphate pathway. Biotechnol J 11 (2016), 249–256.
    • (2016) Biotechnol J , vol.11 , pp. 249-256
    • Seol, E.1    Sekar, B.S.2    Raj, S.M.3    Park, S.4
  • 36
    • 35748932045 scopus 로고    scopus 로고
    • Topology of the global regulatory network of carbon limitation in Escherichia coli
    • [36] Hardiman, T., Lemuth, K., Keller, M.A., Reuss, M., Siemann-Herzberg, M., Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 132 (2007), 359–374.
    • (2007) J Biotechnol , vol.132 , pp. 359-374
    • Hardiman, T.1    Lemuth, K.2    Keller, M.A.3    Reuss, M.4    Siemann-Herzberg, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.