메뉴 건너뛰기




Volumn , Issue , 2016, Pages 671-681

Do cascades recur?

Author keywords

Cascade prediction; Content recurrence; Information diffusion; Memes; Virality.

Indexed keywords

WORLD WIDE WEB;

EID: 84988665001     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2872427.2882993     Document Type: Conference Paper
Times cited : (113)

References (49)
  • 2
    • 84874225468 scopus 로고    scopus 로고
    • A peek into the future: Predicting the evolution of popularity in user generated content
    • M. Ahmed, S. Spagna, F. Huici, and S. Niccolini. A peek into the future: Predicting the evolution of popularity in user generated content. WSDM, 2013.
    • (2013) WSDM
    • Ahmed, M.1    Spagna, S.2    Huici, F.3    Niccolini, S.4
  • 4
    • 78649842272 scopus 로고    scopus 로고
    • Predicting the future with social media
    • S. Asur, B. Huberman, et al. Predicting the future with social media. WI-IAT, 2010.
    • (2010) WI-IAT
    • Asur, S.1    Huberman, B.2
  • 5
    • 85144468582 scopus 로고    scopus 로고
    • Trends in social media: Persistence and decay
    • S. Asur, B. Huberman, G. Szabo, and C. Wang. Trends in social media: Persistence and decay. ICWSM, 2011.
    • (2011) ICWSM
    • Asur, S.1    Huberman, B.2    Szabo, G.3    Wang, C.4
  • 8
    • 18744406314 scopus 로고    scopus 로고
    • The origin of bursts and heavy tails in human dynamics
    • A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature, 2005.
    • (2005) Nature
    • Barabasi, A.-L.1
  • 10
    • 84900456806 scopus 로고    scopus 로고
    • Mathematical models of fads explain the temporal dynamics of internet memes
    • C. Bauckhage, K. Kersting, and F. Hadiji. Mathematical models of fads explain the temporal dynamics of internet memes. ICWSM, 2013.
    • (2013) ICWSM
    • Bauckhage, C.1    Kersting, K.2    Hadiji, F.3
  • 11
    • 84866019585 scopus 로고    scopus 로고
    • The untold story of the clones: Content-Agnostic factors that impact Youtube video popularity
    • Y. Borghol, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. The untold story of the clones: content-Agnostic factors that impact Youtube video popularity. KDD, 2012.
    • (2012) KDD
    • Borghol, Y.1    Ardon, S.2    Carlsson, N.3    Eager, D.4    Mahanti, A.5
  • 13
    • 84859101315 scopus 로고    scopus 로고
    • Delayed information cascades in Flickr: Measurement analysis, and modeling
    • M. Cha, F. Benevenuto, Y.-Y. Ahn, and K. P. Gummadi. Delayed information cascades in Flickr: Measurement, analysis, and modeling. Computer Networks, 2012.
    • (2012) Computer Networks
    • Cha, M.1    Benevenuto, F.2    Ahn, Y.-Y.3    Gummadi, K.P.4
  • 15
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the present with google trends
    • H. Choi and H. Varian. Predicting the present with Google Trends. Econ. Rec., 2012.
    • (2012) Econ. Rec
    • Choi, H.1    Varian, H.2
  • 16
    • 84923370215 scopus 로고    scopus 로고
    • Average is boring: How similarity kills a memes success
    • M. Coscia. Average is boring: How similarity kills a memes success. Sci. Rep., 2014.
    • (2014) Sci. Rep
    • Coscia, M.1
  • 17
    • 57349194232 scopus 로고    scopus 로고
    • Robust dynamic classes revealed by measuring the response function of a social system
    • R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. PNAS, 2008.
    • (2008) PNAS
    • Crane, R.1    Sornette, D.2
  • 18
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 1973.
    • (1973) Czech. Math. J
    • Fiedler, M.1
  • 21
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes
    • Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. CVPR, 2011.
    • (2011) CVPR
    • Gong, Y.1    Lazebnik, S.2
  • 22
    • 84900429376 scopus 로고    scopus 로고
    • Extracting diurnal patterns of real world activity from social media
    • N. Grinberg, M. Naaman, B. Shaw, and G. Lotan. Extracting diurnal patterns of real world activity from social media. ICWSM, 2013.
    • (2013) ICWSM
    • Grinberg, N.1    Naaman, M.2    Shaw, B.3    Lotan, G.4
  • 24
    • 84861068492 scopus 로고    scopus 로고
    • A predictive model for the temporal dynamics of information diffusion in online social networks
    • A. Guille and H. Hacid. A predictive model for the temporal dynamics of information diffusion in online social networks. WWW Companion, 2012.
    • (2012) WWW Companion
    • Guille, A.1    Hacid, H.2
  • 25
    • 0029970350 scopus 로고    scopus 로고
    • A simple model of recurrent epidemics
    • A. Johansen. A simple model of recurrent epidemics. J. Theor. Biol., 1996.
    • (1996) J. Theor. Biol
    • Johansen, A.1
  • 27
    • 0042209915 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • J. Kleinberg. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov., 2003.
    • (2003) Data Min. Knowl. Discov
    • Kleinberg, J.1
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 4243756311 scopus 로고    scopus 로고
    • Small world effect in an epidemiological model
    • M. Kuperman and G. Abramson. Small world effect in an epidemiological model. Phys. Rev. Lett., 2001.
    • (2001) Phys. Rev. Lett
    • Kuperman, M.1    Abramson, G.2
  • 32
    • 84900423774 scopus 로고    scopus 로고
    • Whats in a name? Understanding the interplay between titles, content, and communities in social media
    • H. Lakkaraju, J. J. McAuley, and J. Leskovec. Whats in a name? understanding the interplay between titles, content, and communities in social media. ICWSM, 2013.
    • (2013) ICWSM
    • Lakkaraju, H.1    McAuley, J.J.2    Leskovec, J.3
  • 33
    • 71049177089 scopus 로고    scopus 로고
    • Meme-Tracking and the dynamics of the news cycle
    • J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-Tracking and the dynamics of the news cycle. KDD, 2009.
    • (2009) KDD
    • Leskovec, J.1    Backstrom, L.2    Kleinberg, J.3
  • 35
    • 42449155545 scopus 로고    scopus 로고
    • Tracing information flow on a global scale using internet chain-letter data
    • D. Liben-Nowell and J. Kleinberg. Tracing information flow on a global scale using internet chain-letter data. PNAS, 2008.
    • (2008) PNAS
    • Liben-Nowell, D.1    Kleinberg, J.2
  • 36
    • 84866023367 scopus 로고    scopus 로고
    • Rise and fall patterns of information diffusion: Model and implications
    • Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. KDD, 2012.
    • (2012) KDD
    • Matsubara, Y.1    Sakurai, Y.2    Prakash, B.A.3    Li, L.4    Faloutsos, C.5
  • 37
    • 84909639660 scopus 로고    scopus 로고
    • The bursty dynamics of the twitter information network
    • S. A. Myers and J. Leskovec. The bursty dynamics of the twitter information network. WWW, 2014.
    • (2014) WWW
    • Myers, S.A.1    Leskovec, J.2
  • 38
    • 84866021278 scopus 로고    scopus 로고
    • Information diffusion and external influence in networks
    • S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. KDD, 2012.
    • (2012) KDD
    • Myers, S.A.1    Zhu, C.2    Leskovec, J.3
  • 39
    • 41349106348 scopus 로고    scopus 로고
    • Spread of epidemic disease on networks
    • M. E. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 2002.
    • (2002) Phys. Rev. e
    • Newman, M.E.1
  • 40
    • 0024029039 scopus 로고
    • Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen
    • L. F. Olsen, G. L. Truty, and W. M. Schaffer. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol., 1988.
    • (1988) Denmark. Theor. Popul. Biol
    • Olsen, L.F.1    Truty, G.L.2    Schaffer, W.M.3
  • 41
    • 84875183473 scopus 로고    scopus 로고
    • Simple algorithms for peak detection in time-series
    • G. Palshikar et al. Simple algorithms for peak detection in time-series. ICADABAI, 2009.
    • (2009) ICADABAI
    • Palshikar, G.1
  • 42
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983.
    • (1983) Biometrika
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 43
  • 44
    • 84960981437 scopus 로고    scopus 로고
    • Popularity dynamics and intrinsic quality in reddit and hacker news
    • G. Stoddard. Popularity dynamics and intrinsic quality in reddit and hacker news. ICWSM, 2015.
    • (2015) ICWSM
    • Stoddard, G.1
  • 47
    • 80052121745 scopus 로고    scopus 로고
    • Predicting the speed, scale, and range of information diffusion in twitter
    • J. Yang and S. Counts. Predicting the speed, scale, and range of information diffusion in twitter. ICWSM, 2010.
    • (2010) ICWSM
    • Yang, J.1    Counts, S.2
  • 48
    • 79951755129 scopus 로고    scopus 로고
    • Modeling Information Diffusion in Implicit Networks
    • J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. ICDM, 2010.
    • (2010) ICDM
    • Yang, J.1    Leskovec, J.2
  • 49
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. WSDM, 2011.
    • (2011) WSDM
    • Yang, J.1    Leskovec, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.