메뉴 건너뛰기




Volumn , Issue , 2013, Pages 607-616

A peek into the future: Predicting the evolution of popularity in user generated content

Author keywords

social media; time series clustering

Indexed keywords

CONTENT CACHING; CONTENT POPULARITIES; CONTENT-BASED; INFORMATION CASCADES; K-MEANS; SOCIAL MEDIA; TEMPORAL EVOLUTION; TIME SERIES CLUSTERING; TRAFFIC MANAGEMENT; USER-GENERATED CONTENT; YOUTUBE;

EID: 84874225468     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2433396.2433473     Document Type: Conference Paper
Times cited : (154)

References (37)
  • 1
    • 35348877424 scopus 로고    scopus 로고
    • Why we search: Visualizing and predicting user behavior
    • E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we search: visualizing and predicting user behavior. In WWW'07, 2007.
    • (2007) WWW'07
    • Adar, E.1    Weld, D.S.2    Bershad, B.N.3    Gribble, S.S.4
  • 2
    • 42549105095 scopus 로고    scopus 로고
    • Identifying the influential bloggers in a community
    • N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In WSDM '08, 2008.
    • (2008) WSDM '08
    • Agarwal, N.1    Liu, H.2    Tang, L.3    Yu, P.S.4
  • 3
    • 2942746458 scopus 로고    scopus 로고
    • Is all that talk just noise? The information content of Internet stock message boards
    • DOI 10.1111/j.1540-6261.2004.00662.x
    • W. Antweiler and M. Z. Frank. Is all that talk just noise? the information content of internet stock message boards. The Journal of Finance, 59(3):1259-1294, Jun 2004. (Pubitemid 38799762)
    • (2004) Journal of Finance , vol.59 , Issue.3 , pp. 1259-1294
    • Antweiler, W.1    Frank, M.Z.2
  • 5
    • 78649842272 scopus 로고    scopus 로고
    • Predicting the future with social media
    • S. Asur and B. A. Huberman. Predicting the future with social media. In WI-IAT '10, 2010.
    • (2010) WI-IAT '10
    • Asur, S.1    Huberman, B.A.2
  • 6
    • 84890614558 scopus 로고    scopus 로고
    • From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series
    • R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM'10, 2010.
    • (2010) ICWSM'10
    • Balasubramanyan, R.1    Routledge, B.R.2    Smith, N.A.3
  • 7
    • 84867378461 scopus 로고    scopus 로고
    • The pulse of news in social media: Forecasting popularity
    • abs/1202.0332
    • R. Bandari, S. Asur, and B. A. Huberman. The pulse of news in social media: Forecasting popularity. CoRR, abs/1202.0332, 2012.
    • (2012) CoRR
    • Bandari, R.1    Asur, S.2    Huberman, B.A.3
  • 9
    • 42149149254 scopus 로고    scopus 로고
    • I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system
    • M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube, everybody tubes: analyzing the world's largest user generated content video system. In IMC'07, 2007.
    • (2007) IMC'07
    • Cha, M.1    Kwak, H.2    Rodriguez, P.3    Ahn, Y.-Y.4    Moon, S.5
  • 10
    • 84865652746 scopus 로고    scopus 로고
    • A measurement-driven analysis of information propagation in the flickr social network
    • M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the flickr social network. In WWW '09, 2009.
    • (2009) WWW '09
    • Cha, M.1    Mislove, A.2    Gummadi, K.P.3
  • 11
    • 57349194232 scopus 로고    scopus 로고
    • Robust dynamic classes revealed by measuring the response function of a social system
    • 15469
    • R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. PNAS, 105(15469), 2008.
    • (2008) PNAS , vol.105
    • Crane, R.1    Sornette, D.2
  • 12
    • 0041012082 scopus 로고
    • Forecasting Volatility and Correlations with EGARCH models
    • R. Cumby, S. Figlewski, and J. Hasbrouck. Forecasting Volatility and Correlations with EGARCH models. Journal of Derivatives, 1:51-63, 1993.
    • (1993) Journal of Derivatives , vol.1 , pp. 51-63
    • Cumby, R.1    Figlewski, S.2    Hasbrouck, J.3
  • 14
    • 79952392592 scopus 로고    scopus 로고
    • The tube over time: Characterizing popularity growth of youtube videos
    • February
    • F. Figueiredo, F. Benevenuto, and J. Almeida. The tube over time: Characterizing popularity growth of youtube videos. In WSDM'11, February 2011.
    • (2011) WSDM'11
    • Figueiredo, F.1    Benevenuto, F.2    Almeida, J.3
  • 15
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007. (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 16
    • 84910617896 scopus 로고    scopus 로고
    • Social dynamics of digg
    • abs/1202.0031
    • T. Hogg and K. Lerman. Social dynamics of digg. CoRR, abs/1202.0031, 2012.
    • (2012) CoRR
    • Hogg, T.1    Lerman, K.2
  • 18
    • 77749289749 scopus 로고    scopus 로고
    • Digging digg: Comment mining, popularity prediction, and social network analysis
    • S. Jamali and H. Rangwala. Digging digg: Comment mining, popularity prediction, and social network analysis. In WISM '09, 2009.
    • (2009) WISM '09
    • Jamali, S.1    Rangwala, H.2
  • 19
    • 14844285758 scopus 로고    scopus 로고
    • Exact indexing of dynamic time warping
    • E. J. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. KAIS, 7(3):358-386, 2005.
    • (2005) KAIS , vol.7 , Issue.3 , pp. 358-386
    • Keogh, E.J.1    Ratanamahatana, C.A.2
  • 20
    • 80055002844 scopus 로고    scopus 로고
    • Predicting the virtual temperature of web-blog articles as a measurement tool for online popularity
    • S.-D. Kim, S.-H. Kim, and H.-G. Cho. Predicting the virtual temperature of web-blog articles as a measurement tool for online popularity. In CIT '11, 2011.
    • (2011) CIT '11
    • Kim, S.-D.1    Kim, S.-H.2    Cho, H.-G.3
  • 21
    • 77954619566 scopus 로고    scopus 로고
    • What is Twitter, a social network or a news media?
    • H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW '10, 2010.
    • (2010) WWW '10
    • Kwak, H.1    Lee, C.2    Park, H.3    Moon, S.4
  • 22
    • 83055179252 scopus 로고    scopus 로고
    • Attention prediction on social media brand pages
    • H. Lakkaraju and J. Ajmera. Attention prediction on social media brand pages. In CIKM '11, 2011.
    • (2011) CIKM '11
    • Lakkaraju, H.1    Ajmera, J.2
  • 23
    • 79960062654 scopus 로고    scopus 로고
    • Making sense of twitter
    • D. Laniado and P. Mika. Making sense of twitter. In ISWC'10, 2010.
    • (2010) ISWC'10
    • Laniado, D.1    Mika, P.2
  • 24
    • 78649863842 scopus 로고    scopus 로고
    • An approach to model and predict the popularity of online contents with explanatory factors
    • J. G. Lee, S. Moon, and K. Salamatian. An approach to model and predict the popularity of online contents with explanatory factors. In WI-IAT, 2010.
    • (2010) WI-IAT
    • Lee, J.G.1    Moon, S.2    Salamatian, K.3
  • 25
    • 80555131166 scopus 로고    scopus 로고
    • Modeling and predicting the popularity of online contents with cox proportional hazard regression model
    • J. G. Lee, S. Moon, and K. Salamatian. Modeling and predicting the popularity of online contents with cox proportional hazard regression model. Neurocomputing, 76(1):134-145, 2012.
    • (2012) Neurocomputing , vol.76 , Issue.1 , pp. 134-145
    • Lee, J.G.1    Moon, S.2    Salamatian, K.3
  • 26
    • 84874241754 scopus 로고    scopus 로고
    • Using a model of social dynamics to predict popularity of news
    • abs/1004.5354
    • K. Lerman and T. Hogg. Using a model of social dynamics to predict popularity of news. CoRR, abs/1004.5354, 2010.
    • (2010) CoRR
    • Lerman, K.1    Hogg, T.2
  • 28
    • 85167408298 scopus 로고    scopus 로고
    • Viral actions: Predicting video view counts using synchronous sharing behaviors
    • D. A. Shamma, J. Yew, L. Kennedy, and E. F. Churchill. Viral actions: Predicting video view counts using synchronous sharing behaviors. In ICWSM, 2011.
    • (2011) ICWSM
    • Shamma, D.A.1    Yew, J.2    Kennedy, L.3    Churchill, E.F.4
  • 29
    • 77955233534 scopus 로고    scopus 로고
    • Predicting the popularity of online content
    • August
    • G. Szabo and B. A. Huberman. Predicting the popularity of online content. Commun. ACM, 53:80-88, August 2010.
    • (2010) Commun. ACM , vol.53 , pp. 80-88
    • Szabo, G.1    Huberman, B.A.2
  • 31
    • 79955164980 scopus 로고    scopus 로고
    • News comments: Exploring, modeling, and online prediction
    • M. Tsagkias, W. Weerkamp, and M. de Rijke. News comments: exploring, modeling, and online prediction. In ECIR'2010, 2010.
    • (2010) ECIR'2010
    • Tsagkias, M.1    Weerkamp, W.2    De Rijke, M.3
  • 32
    • 84890668120 scopus 로고    scopus 로고
    • Predicting elections with Twitter: What 140 characters reveal about political sentiment
    • T. O. S. Tumasjan, P. G. Sandner, and I. M. Welpe. Predicting elections with Twitter: What 140 characters reveal about political sentiment. In ICWSM'10, 2010.
    • (2010) ICWSM'10
    • Tumasjan, T.O.S.1    Sandner, P.G.2    Welpe, I.M.3
  • 33
    • 33747406682 scopus 로고    scopus 로고
    • Wikipedia. August Online; accessed 30-Nov-2012
    • Wikipedia. Viterbi algorithm, August 2012. [Online; accessed 30-Nov-2012].
    • (2012) Viterbi Algorithm
  • 36
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM '11, 2011.
    • (2011) WSDM '11
    • Yang, J.1    Leskovec, J.2
  • 37
    • 84868517786 scopus 로고    scopus 로고
    • Predicting Stock Market Indicators Through Twitter: "I hope it is not as bad as I fear"
    • Oct
    • X. Zhang, H. Fuehres, and P. Gloor. Predicting Stock Market Indicators Through Twitter: "I hope it is not as bad as I fear". Procedia - Social and Behavioral Sciences, 26, Oct 2011.
    • (2011) Procedia - Social and Behavioral Sciences , vol.26
    • Zhang, X.1    Fuehres, H.2    Gloor, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.