-
2
-
-
42549105095
-
Identifying the influential bloggers in a community
-
N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In WSDM '08, 2008.
-
(2008)
WSDM '08
-
-
Agarwal, N.1
Liu, H.2
Tang, L.3
Yu, P.S.4
-
3
-
-
2942746458
-
Is all that talk just noise? The information content of Internet stock message boards
-
DOI 10.1111/j.1540-6261.2004.00662.x
-
W. Antweiler and M. Z. Frank. Is all that talk just noise? the information content of internet stock message boards. The Journal of Finance, 59(3):1259-1294, Jun 2004. (Pubitemid 38799762)
-
(2004)
Journal of Finance
, vol.59
, Issue.3
, pp. 1259-1294
-
-
Antweiler, W.1
Frank, M.Z.2
-
4
-
-
79951635390
-
Optimal content placement for a large-scale vod system
-
D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan. Optimal content placement for a large-scale vod system. In Co-NEXT '10, 2010.
-
(2010)
Co-NEXT '10
-
-
Applegate, D.1
Archer, A.2
Gopalakrishnan, V.3
Lee, S.4
Ramakrishnan, K.K.5
-
5
-
-
78649842272
-
Predicting the future with social media
-
S. Asur and B. A. Huberman. Predicting the future with social media. In WI-IAT '10, 2010.
-
(2010)
WI-IAT '10
-
-
Asur, S.1
Huberman, B.A.2
-
6
-
-
84890614558
-
From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series
-
R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM'10, 2010.
-
(2010)
ICWSM'10
-
-
Balasubramanyan, R.1
Routledge, B.R.2
Smith, N.A.3
-
7
-
-
84867378461
-
The pulse of news in social media: Forecasting popularity
-
abs/1202.0332
-
R. Bandari, S. Asur, and B. A. Huberman. The pulse of news in social media: Forecasting popularity. CoRR, abs/1202.0332, 2012.
-
(2012)
CoRR
-
-
Bandari, R.1
Asur, S.2
Huberman, B.A.3
-
8
-
-
84874266517
-
Characterizing and modeling popularity evolution of user-generated videos
-
Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. Characterizing and modeling popularity evolution of user-generated videos. In IFIP Performace, 2011.
-
(2011)
IFIP Performace
-
-
Borghol, Y.1
Mitra, S.2
Ardon, S.3
Carlsson, N.4
Eager, D.5
Mahanti, A.6
-
9
-
-
42149149254
-
I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system
-
M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube, everybody tubes: analyzing the world's largest user generated content video system. In IMC'07, 2007.
-
(2007)
IMC'07
-
-
Cha, M.1
Kwak, H.2
Rodriguez, P.3
Ahn, Y.-Y.4
Moon, S.5
-
10
-
-
84865652746
-
A measurement-driven analysis of information propagation in the flickr social network
-
M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information propagation in the flickr social network. In WWW '09, 2009.
-
(2009)
WWW '09
-
-
Cha, M.1
Mislove, A.2
Gummadi, K.P.3
-
11
-
-
57349194232
-
Robust dynamic classes revealed by measuring the response function of a social system
-
15469
-
R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. PNAS, 105(15469), 2008.
-
(2008)
PNAS
, vol.105
-
-
Crane, R.1
Sornette, D.2
-
12
-
-
0041012082
-
Forecasting Volatility and Correlations with EGARCH models
-
R. Cumby, S. Figlewski, and J. Hasbrouck. Forecasting Volatility and Correlations with EGARCH models. Journal of Derivatives, 1:51-63, 1993.
-
(1993)
Journal of Derivatives
, vol.1
, pp. 51-63
-
-
Cumby, R.1
Figlewski, S.2
Hasbrouck, J.3
-
14
-
-
79952392592
-
The tube over time: Characterizing popularity growth of youtube videos
-
February
-
F. Figueiredo, F. Benevenuto, and J. Almeida. The tube over time: Characterizing popularity growth of youtube videos. In WSDM'11, February 2011.
-
(2011)
WSDM'11
-
-
Figueiredo, F.1
Benevenuto, F.2
Almeida, J.3
-
15
-
-
33847172327
-
Clustering by passing messages between data points
-
DOI 10.1126/science.1136800
-
B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007. (Pubitemid 46281181)
-
(2007)
Science
, vol.315
, Issue.5814
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
16
-
-
84910617896
-
Social dynamics of digg
-
abs/1202.0031
-
T. Hogg and K. Lerman. Social dynamics of digg. CoRR, abs/1202.0031, 2012.
-
(2012)
CoRR
-
-
Hogg, T.1
Lerman, K.2
-
18
-
-
77749289749
-
Digging digg: Comment mining, popularity prediction, and social network analysis
-
S. Jamali and H. Rangwala. Digging digg: Comment mining, popularity prediction, and social network analysis. In WISM '09, 2009.
-
(2009)
WISM '09
-
-
Jamali, S.1
Rangwala, H.2
-
19
-
-
14844285758
-
Exact indexing of dynamic time warping
-
E. J. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. KAIS, 7(3):358-386, 2005.
-
(2005)
KAIS
, vol.7
, Issue.3
, pp. 358-386
-
-
Keogh, E.J.1
Ratanamahatana, C.A.2
-
20
-
-
80055002844
-
Predicting the virtual temperature of web-blog articles as a measurement tool for online popularity
-
S.-D. Kim, S.-H. Kim, and H.-G. Cho. Predicting the virtual temperature of web-blog articles as a measurement tool for online popularity. In CIT '11, 2011.
-
(2011)
CIT '11
-
-
Kim, S.-D.1
Kim, S.-H.2
Cho, H.-G.3
-
21
-
-
77954619566
-
What is Twitter, a social network or a news media?
-
H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW '10, 2010.
-
(2010)
WWW '10
-
-
Kwak, H.1
Lee, C.2
Park, H.3
Moon, S.4
-
22
-
-
83055179252
-
Attention prediction on social media brand pages
-
H. Lakkaraju and J. Ajmera. Attention prediction on social media brand pages. In CIKM '11, 2011.
-
(2011)
CIKM '11
-
-
Lakkaraju, H.1
Ajmera, J.2
-
23
-
-
79960062654
-
Making sense of twitter
-
D. Laniado and P. Mika. Making sense of twitter. In ISWC'10, 2010.
-
(2010)
ISWC'10
-
-
Laniado, D.1
Mika, P.2
-
24
-
-
78649863842
-
An approach to model and predict the popularity of online contents with explanatory factors
-
J. G. Lee, S. Moon, and K. Salamatian. An approach to model and predict the popularity of online contents with explanatory factors. In WI-IAT, 2010.
-
(2010)
WI-IAT
-
-
Lee, J.G.1
Moon, S.2
Salamatian, K.3
-
25
-
-
80555131166
-
Modeling and predicting the popularity of online contents with cox proportional hazard regression model
-
J. G. Lee, S. Moon, and K. Salamatian. Modeling and predicting the popularity of online contents with cox proportional hazard regression model. Neurocomputing, 76(1):134-145, 2012.
-
(2012)
Neurocomputing
, vol.76
, Issue.1
, pp. 134-145
-
-
Lee, J.G.1
Moon, S.2
Salamatian, K.3
-
26
-
-
84874241754
-
Using a model of social dynamics to predict popularity of news
-
abs/1004.5354
-
K. Lerman and T. Hogg. Using a model of social dynamics to predict popularity of news. CoRR, abs/1004.5354, 2010.
-
(2010)
CoRR
-
-
Lerman, K.1
Hogg, T.2
-
27
-
-
36849083014
-
Cost-effective outbreak detection in networks
-
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In SIGKDD'07, 2007.
-
(2007)
SIGKDD'07
-
-
Leskovec, J.1
Krause, A.2
Guestrin, C.3
Faloutsos, C.4
VanBriesen, J.5
Glance, N.6
-
28
-
-
85167408298
-
Viral actions: Predicting video view counts using synchronous sharing behaviors
-
D. A. Shamma, J. Yew, L. Kennedy, and E. F. Churchill. Viral actions: Predicting video view counts using synchronous sharing behaviors. In ICWSM, 2011.
-
(2011)
ICWSM
-
-
Shamma, D.A.1
Yew, J.2
Kennedy, L.3
Churchill, E.F.4
-
29
-
-
77955233534
-
Predicting the popularity of online content
-
August
-
G. Szabo and B. A. Huberman. Predicting the popularity of online content. Commun. ACM, 53:80-88, August 2010.
-
(2010)
Commun. ACM
, vol.53
, pp. 80-88
-
-
Szabo, G.1
Huberman, B.A.2
-
30
-
-
84877617506
-
Predicting the popularity of online articles based on user comments
-
A. Tatar, J. Leguay, P. Antoniadis, A. Limbourg, M. D. de Amorim, and S. Fdida. Predicting the popularity of online articles based on user comments. In WIMS '11, 2011.
-
(2011)
WIMS '11
-
-
Tatar, A.1
Leguay, J.2
Antoniadis, P.3
Limbourg, A.4
De Amorim, M.D.5
Fdida, S.6
-
31
-
-
79955164980
-
News comments: Exploring, modeling, and online prediction
-
M. Tsagkias, W. Weerkamp, and M. de Rijke. News comments: exploring, modeling, and online prediction. In ECIR'2010, 2010.
-
(2010)
ECIR'2010
-
-
Tsagkias, M.1
Weerkamp, W.2
De Rijke, M.3
-
32
-
-
84890668120
-
Predicting elections with Twitter: What 140 characters reveal about political sentiment
-
T. O. S. Tumasjan, P. G. Sandner, and I. M. Welpe. Predicting elections with Twitter: What 140 characters reveal about political sentiment. In ICWSM'10, 2010.
-
(2010)
ICWSM'10
-
-
Tumasjan, T.O.S.1
Sandner, P.G.2
Welpe, I.M.3
-
33
-
-
33747406682
-
-
Wikipedia. August Online; accessed 30-Nov-2012
-
Wikipedia. Viterbi algorithm, August 2012. [Online; accessed 30-Nov-2012].
-
(2012)
Viterbi Algorithm
-
-
-
36
-
-
79952376390
-
Patterns of temporal variation in online media
-
J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM '11, 2011.
-
(2011)
WSDM '11
-
-
Yang, J.1
Leskovec, J.2
-
37
-
-
84868517786
-
Predicting Stock Market Indicators Through Twitter: "I hope it is not as bad as I fear"
-
Oct
-
X. Zhang, H. Fuehres, and P. Gloor. Predicting Stock Market Indicators Through Twitter: "I hope it is not as bad as I fear". Procedia - Social and Behavioral Sciences, 26, Oct 2011.
-
(2011)
Procedia - Social and Behavioral Sciences
, vol.26
-
-
Zhang, X.1
Fuehres, H.2
Gloor, P.3
|