-
1
-
-
84879463278
-
StreamKM++: A clustering algorithm for data streams
-
Ackermann, M. R.; Martens, M.; Raupach, C.; Swierkot, K.; Lammersen, C.; and Sohler, C. 2012. StreamKM++: A clustering algorithm for data streams. Journal of Experimental Algorithmics 17:2-4.
-
(2012)
Journal of Experimental Algorithmics
, vol.17
, pp. 2-4
-
-
Ackermann, M.R.1
Martens, M.2
Raupach, C.3
Swierkot, K.4
Lammersen, C.5
Sohler, C.6
-
3
-
-
70449722914
-
Adaptive sampling for k-means clustering
-
Springer
-
Aggarwal, A.; Deshpande, A.; and Kannan, R. 2009. Adaptive sampling for k-means clustering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer. 15-28.
-
(2009)
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
, pp. 15-28
-
-
Aggarwal, A.1
Deshpande, A.2
Kannan, R.3
-
5
-
-
84969135721
-
K-means++: The advantages of careful seeding
-
Society for Industrial and Applied Mathematics
-
Arthur, D., and Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. In Symposium on Discrete Algorithms (SODA), 1027-1035. Society for Industrial and Applied Mathematics.
-
(2007)
Symposium on Discrete Algorithms (SODA)
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
7
-
-
84863760691
-
Scalable k-means+
-
Bahmani, B.; Moseley, B.; Vattani, A.; Kumar, R.; and Vassilvitskii, S. 2012. Scalable k-means++. Very Large Data Bases (VLDB) 5(7):622-633.
-
(2012)
Very Large Data Bases (VLDB)
, vol.5
, Issue.7
, pp. 622-633
-
-
Bahmani, B.1
Moseley, B.2
Vattani, A.3
Kumar, R.4
Vassilvitskii, S.5
-
8
-
-
70349129917
-
Approximate clustering without the approximation
-
Society for Industrial and Applied Mathematics
-
Balcan, M.-F.; Blum, A.; and Gupta, A. 2009. Approximate clustering without the approximation. In Symposium on Discrete Algorithms (SODA), 1068-1077. Society for Industrial and Applied Mathematics.
-
(2009)
Symposium on Discrete Algorithms (SODA)
, pp. 1068-1077
-
-
Balcan, M.-F.1
Blum, A.2
Gupta, A.3
-
11
-
-
79955707875
-
Streaming k-means on wellclusterable data
-
Society for Industrial and Applied Mathematics
-
Braverman, V.; Meyerson, A.; Ostrovsky, R.; Roytman, A.; Shindler, M.; and Tagiku, B. 2011. Streaming k-means on wellclusterable data. In Symposium on Discrete Algorithms (SODA), 26-40. Society for Industrial and Applied Mathematics.
-
(2011)
Symposium on Discrete Algorithms (SODA)
, pp. 26-40
-
-
Braverman, V.1
Meyerson, A.2
Ostrovsky, R.3
Roytman, A.4
Shindler, M.5
Tagiku, B.6
-
13
-
-
0034346504
-
Exact bound for the convergence of metropolis chains
-
Cai, H. 2000. Exact bound for the convergence of Metropolis chains. Stochastic Analysis and Applications 18(1):63-71.
-
(2000)
Stochastic Analysis and Applications
, vol.18
, Issue.1
, pp. 63-71
-
-
Cai, H.1
-
14
-
-
84872575253
-
Learning feature representations with k-means
-
Springer
-
Coates, A., and Ng, A. Y. 2012. Learning feature representations with k-means. In Neural Networks: Tricks of the Trade. Springer. 561-580.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 561-580
-
-
Coates, A.1
Ng, A.Y.2
-
16
-
-
79959297347
-
The next big one: Detecting earthquakes and other rare events from community-based sensors
-
Faulkner, M.; Olson, M.; Chandy, R.; Krause, J.; Chandy, K. M.; and Krause, A. 2011. The next big one: Detecting earthquakes and other rare events from community-based sensors. In ACM/IEEE International Conference on Information Processing in Sensor Networks.
-
(2011)
ACM/IEEE International Conference on Information Processing in Sensor Networks
-
-
Faulkner, M.1
Olson, M.2
Chandy, R.3
Krause, J.4
Chandy, K.M.5
Krause, A.6
-
17
-
-
0038633423
-
Clustering data streams: Theory and practice
-
Guha, S.; Meyerson, A.; Mishra, N.; Motwani, R.; and O'Callaghan, L. 2003. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering 15(3):515-528.
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
18
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97-109.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
19
-
-
84865280736
-
Analysis of k-means++ for separable data
-
Springer
-
Jaiswal, R., and Garg, N. 2012. Analysis of k-means++ for separable data. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer. 591-602.
-
(2012)
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
, pp. 591-602
-
-
Jaiswal, R.1
Garg, N.2
-
20
-
-
84904257046
-
A simple D2-sampling based PTAS for k-means and other clustering problems
-
Jaiswal, R.; Kumar, A.; and Sen, S. 2014. A simple D2-sampling based PTAS for k-means and other clustering problems. Algorithmica 70(1):22-46.
-
(2014)
Algorithmica
, vol.70
, Issue.1
, pp. 22-46
-
-
Jaiswal, R.1
Kumar, A.2
Sen, S.3
-
21
-
-
84911914209
-
Improved analysis of D2-sampling based PTAS for k-means and other clustering problems
-
Jaiswal, R.; Kumar, M.; and Yadav, P. 2015. Improved analysis of D2-sampling based PTAS for k-means and other clustering problems. Information Processing Letters 115(2):100-103.
-
(2015)
Information Processing Letters
, vol.115
, Issue.2
, pp. 100-103
-
-
Jaiswal, R.1
Kumar, M.2
Yadav, P.3
-
22
-
-
85007187671
-
-
KDD Cup. Retrieved from osmot.cs.cornell.edu/kddcup
-
KDD Cup. 2004. Protein Homology Dataset. Retrieved from osmot.cs.cornell.edu/kddcup.
-
(2004)
Protein Homology Dataset
-
-
-
25
-
-
35348899361
-
The effectiveness of Lloyd-Type methods for the k-means problem
-
IEEE
-
Ostrovsky, R.; Rabani, Y.; Schulman, L. J.; and Swamy, C. 2006. The effectiveness of Lloyd-Type methods for the k-means problem. In Foundations of Computer Science (FOCS), 165-176. IEEE.
-
(2006)
Foundations of Computer Science (FOCS)
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
26
-
-
0000963889
-
Strong consistency of k-means clustering
-
Pollard, D. 1981. Strong consistency of k-means clustering. The Annals of Statistics 9(1):135-140.
-
(1981)
The Annals of Statistics
, vol.9
, Issue.1
, pp. 135-140
-
-
Pollard, D.1
-
28
-
-
85162439676
-
Fast and accurate k-means for large datasets
-
Shindler, M.; Wong, A.; and Meyerson, A. W. 2011. Fast and accurate k-means for large datasets. In NIPS, 2375-2383.
-
(2011)
NIPS
, pp. 2375-2383
-
-
Shindler, M.1
Wong, A.2
Meyerson, A.W.3
-
29
-
-
85007234541
-
-
United States Geological Survey. Retrieved from the mldata.org repository
-
United States Geological Survey. 2010. Global Earthquakes (1.1.1972-19.3.2010). Retrieved from the mldata.org repository.
-
(2010)
Global Earthquakes (1.1.1972-19.3.2010)
-
-
-
30
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.; Ng, A.; Liu, B.; Yu, P.; Zhou, Z.-H.; Steinbach, M.; Hand, D.; and Steinberg, D. 2008. Top 10 algorithms in data mining. Knowledge and Information Systems 14(1):1-37.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.7
Ng, A.8
Liu, B.9
Yu, P.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.13
Steinberg, D.14
-
32
-
-
71749094178
-
Parallel k-means clustering based on map reduce
-
Springer
-
Zhao, W.; Ma, H.; and He, Q. 2009. Parallel k-means clustering based on MapReduce. In Cloud Computing. Springer. 674-679.
-
(2009)
Cloud Computing
, pp. 674-679
-
-
Zhao, W.1
Ma, H.2
He, Q.3
|