메뉴 건너뛰기




Volumn 5, Issue 1, 2016, Pages

An overview of topic modeling and its current applications in bioinformatics

Author keywords

Bioinformatics; Classification; Clustering; Probabilistic generative model; Topic model

Indexed keywords


EID: 84988369357     PISSN: None     EISSN: 21931801     Source Type: Journal    
DOI: 10.1186/s40064-016-3252-8     Document Type: Review
Times cited : (310)

References (85)
  • 1
    • 84988443128 scopus 로고    scopus 로고
    • Modeling protein–protein interactions in biomedical abstracts with latent dirichlet allocation
    • Andrzejewski D (2006) Modeling protein–protein interactions in biomedical abstracts with latent dirichlet allocation. CS 838-Final Project
    • (2006) CS 838-Final Project
    • Andrzejewski, D.1
  • 2
    • 84964987498 scopus 로고    scopus 로고
    • Clinical case-based retrieval using latent topic analysis. In: AMIA annual symposium proceedings
    • Arnold CW, El-Saden SM, Bui AA, Taira R (2010) Clinical case-based retrieval using latent topic analysis. In: AMIA annual symposium proceedings, 26 pp
    • (2010)
    • Arnold, C.W.1    El-Saden, S.M.2    Bui, A.A.3    Taira, R.4
  • 3
    • 84863546329 scopus 로고    scopus 로고
    • Topic models for taxonomies. In: Proceedings of the 12th ACM/IEEE-CS joint conference on digital libraries
    • Bakalov A, McCallum A, Wallach H, Mimno D (2012) Topic models for taxonomies. In: Proceedings of the 12th ACM/IEEE-CS joint conference on digital libraries, pp 237–240
    • (2012) pp 237–240
    • Bakalov, A.1    McCallum, A.2    Wallach, H.3    Mimno, D.4
  • 4
    • 78149474968 scopus 로고    scopus 로고
    • International conference on pattern recognition
    • Bicego M, Lovato P, Ferrarini A, Delledonne M (2010a) Biclustering of expression microarray data with topic models. In: 2010 International conference on pattern recognition, pp 2728–2731
    • (2010) pp 2728–2731
    • Bicego, M.1    Lovato, P.2    Ferrarini, A.3
  • 5
    • 77954711241 scopus 로고    scopus 로고
    • Expression microarray classification using topic models. In: ACM symposium on applied computing
    • Bicego M, Lovato P, Oliboni B, Perina A (2010b) Expression microarray classification using topic models. In: ACM symposium on applied computing, pp 1516–1520
    • (2010) pp 1516–1520
    • Bicego, M.1    Lovato, P.2    Oliboni, B.3    Perina, A.4
  • 6
    • 84875203429 scopus 로고    scopus 로고
    • Investigating topic models’ capabilities in expression microarray data classification
    • PID: 23221091
    • Bicego M, Lovato P, Perina A, Fasoli M, Delledonne M et al (2012) Investigating topic models’ capabilities in expression microarray data classification. IEEE/ACM Trans Comput Biol Bioinform 9(6):1831–1836
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.6 , pp. 1831-1836
    • Bicego, M.1    Lovato, P.2    Perina, A.3    Fasoli, M.4    Delledonne, M.5
  • 7
    • 80054105160 scopus 로고    scopus 로고
    • Mining FDA drug labels using an unsupervised learning technique-topic modeling
    • Bisgin H, Liu Z, Fang H, Xu X, Tong W (2011) Mining FDA drug labels using an unsupervised learning technique-topic modeling. BMC Bioinform 12(10):1
    • (2011) BMC Bioinform , vol.12 , Issue.10 , pp. 1
    • Bisgin, H.1    Liu, Z.2    Fang, H.3    Xu, X.4    Tong, W.5
  • 8
    • 84877033096 scopus 로고    scopus 로고
    • Investigating drug repositioning opportunities in FDA drug labels through topic modeling
    • Bisgin H, Liu Z, Kelly R, Fang H, Xu X et al (2012) Investigating drug repositioning opportunities in FDA drug labels through topic modeling. BMC Bioinform 13(15):1
    • (2012) BMC Bioinform , vol.13 , Issue.15 , pp. 1
    • Bisgin, H.1    Liu, Z.2    Kelly, R.3    Fang, H.4    Xu, X.5
  • 9
    • 84885364503 scopus 로고    scopus 로고
    • A systems approach for analysis of high content screening assay data with topic modeling
    • Bisgin H, Chen M, Wang Y, Kelly R, Hong F et al (2013) A systems approach for analysis of high content screening assay data with topic modeling. BMC Bioinform 14(Suppl 14):1–10
    • (2013) BMC Bioinform , vol.14 , pp. 1-10
    • Bisgin, H.1    Chen, M.2    Wang, Y.3    Kelly, R.4    Hong, F.5
  • 10
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84
    • (2012) Commun ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 11
    • 34250772913 scopus 로고    scopus 로고
    • Dynamic topic models. In: Proceedings of the 23rd international conference on machine learning
    • Blei DM, Lafferty JD (2006) Dynamic topic models. In: Proceedings of the 23rd international conference on machine learning, pp 113–120
    • (2006) pp 113–120
    • Blei, D.M.1    Lafferty, J.D.2
  • 12
    • 52449116403 scopus 로고    scopus 로고
    • A correlated topic model of science
    • Blei DM, Lafferty JD (2007) A correlated topic model of science. Statistics 1(1):17–35
    • (2007) Statistics , vol.1 , Issue.1 , pp. 17-35
    • Blei, D.M.1    Lafferty, J.D.2
  • 14
    • 66349091744 scopus 로고    scopus 로고
    • Probabilistic retrieval and visualization of biologically relevant microarray experiments
    • Caldas J, Gehlenborg N, Faisal A, Brazma A, Kaski S (2009) Probabilistic retrieval and visualization of biologically relevant microarray experiments. Bioinformatics 25(12):296–300
    • (2009) Bioinformatics , vol.25 , Issue.12 , pp. 296-300
    • Caldas, J.1    Gehlenborg, N.2    Faisal, A.3    Brazma, A.4    Kaski, S.5
  • 16
    • 84870276621 scopus 로고    scopus 로고
    • Hierarchical relational models for document networks
    • Chang J, Blei DM (2010) Hierarchical relational models for document networks. Ann Appl Stat 4(1):124–150
    • (2010) Ann Appl Stat , vol.4 , Issue.1 , pp. 124-150
    • Chang, J.1    Blei, D.M.2
  • 17
    • 79952377087 scopus 로고    scopus 로고
    • Probabilistic topic modeling for genomic data interpretation. In: IEEE international conference on bioinformatics and biomedicine (BIBM)
    • Chen X, Hu X, Shen X, Rosen G (2010) Probabilistic topic modeling for genomic data interpretation. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 149–152
    • (2010) pp 149–152
    • Chen, X.1    Hu, X.2    Shen, X.3    Rosen, G.4
  • 18
    • 84862969635 scopus 로고    scopus 로고
    • Inferring functional groups from microbial gene catalogue with probabilistic topic models. In: IEEE international conference on bioinformatics and biomedicine (BIBM)
    • Chen X, He T, Hu X, An Y, Wu X (2011) Inferring functional groups from microbial gene catalogue with probabilistic topic models. In: IEEE international conference on bioinformatics and biomedicine (BIBM), pp 3–9
    • (2011) pp 3–9
    • Chen, X.1    He, T.2    Hu, X.3    An, Y.4    Wu, X.5
  • 19
    • 84866510970 scopus 로고    scopus 로고
    • Estimating functional groups in human gut microbiome with probabilistic topic models
    • COI: 1:CAS:528:DC%2BC38XlsF2huw%3D%3D
    • Chen X, He T, Hu X, Zhou Y, An Y et al (2012a) Estimating functional groups in human gut microbiome with probabilistic topic models. IEEE Trans Nanobiosci 11(3):203–215
    • (2012) IEEE Trans Nanobiosci , vol.11 , Issue.3 , pp. 203-215
    • Chen, X.1    He, T.2    Hu, X.3    Zhou, Y.4    An, Y.5
  • 20
    • 84861501825 scopus 로고    scopus 로고
    • Exploiting the functional and taxonomic structure of genomic data by probabilistic topic modeling
    • PID: 21844637
    • Chen X, Hu X, Lim TY, Shen X (2012b) Exploiting the functional and taxonomic structure of genomic data by probabilistic topic modeling. IEEE/ACM Trans Comput Biol Bioinform 9(4):980–991
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.4 , pp. 980-991
    • Chen, X.1    Hu, X.2    Lim, T.Y.3    Shen, X.4
  • 21
    • 84871810316 scopus 로고    scopus 로고
    • A LDA-based approach to promoting ranking diversity for genomics information retrieval
    • Chen Y, Yin X, Li Z, Hu X, Huang JX (2012c) A LDA-based approach to promoting ranking diversity for genomics information retrieval. BMC Genom 13(3):1
    • (2012) BMC Genom , vol.13 , Issue.3 , pp. 1
    • Chen, Y.1    Yin, X.2    Li, Z.3    Hu, X.4    Huang, J.X.5
  • 22
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • COI: 1:CAS:528:DC%2BC3cXnsVOktbg%3D, PID: 20529939
    • Coelho LP, Peng T, Murphy RF (2010) Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 26(12):i7–i12
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i7-i12
    • Coelho, L.P.1    Peng, T.2    Murphy, R.F.3
  • 25
    • 84988322991 scopus 로고    scopus 로고
    • Fang EX, Li M-D, Jordan MI, Liu H (2015) Mining massive amounts of genomic data: a semiparametric topic modeling approach
    • Fang EX, Li M-D, Jordan MI, Liu H (2015) Mining massive amounts of genomic data: a semiparametric topic modeling approach
  • 27
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • COI: 1:CAS:528:DC%2BD2cXjsFCjt7s%3D, PID: 14872004
    • Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Natl Acad Sci 101(Suppl 1):5228–5235
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 5228-5235
    • Griffiths, T.L.1    Steyvers, M.2
  • 28
    • 8644225400 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested chinese restaurant process
    • Griffiths D, Tenenbaum M (2004) Hierarchical topic models and the nested chinese restaurant process. Adv Neural Inf Process Syst 16:17
    • (2004) Adv Neural Inf Process Syst , vol.16 , pp. 17
    • Griffiths, D.1    Tenenbaum, M.2
  • 30
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1–2):177–196
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 31
    • 84916593630 scopus 로고    scopus 로고
    • Using conversation topics for predicting therapy outcomes in schizophrenia
    • Howes C, Purver M, McCabe R (2013) Using conversation topics for predicting therapy outcomes in schizophrenia. Biomed Inf Insights 6(Suppl 1):39
    • (2013) Biomed Inf Insights , vol.6 , pp. 39
    • Howes, C.1    Purver, M.2    McCabe, R.3
  • 33
    • 84895461076 scopus 로고    scopus 로고
    • Discovery of clinical pathway patterns from event logs using probabilistic topic models
    • PID: 24076435
    • Huang Z, Dong W, Ji L, Gan C, Lu X et al (2014) Discovery of clinical pathway patterns from event logs using probabilistic topic models. J Biomed Inform 47:39–57
    • (2014) J Biomed Inform , vol.47 , pp. 39-57
    • Huang, Z.1    Dong, W.2    Ji, L.3    Gan, C.4    Lu, X.5
  • 34
    • 84929353602 scopus 로고    scopus 로고
    • Author topic model-based collaborative filtering for personalized POI recommendations
    • Jiang S, Qian X, Shen J, Fu Y, Mei T (2015) Author topic model-based collaborative filtering for personalized POI recommendations. IEEE Trans Multimedia 17(6):907–918
    • (2015) IEEE Trans Multimedia , vol.17 , Issue.6 , pp. 907-918
    • Jiang, S.1    Qian, X.2    Shen, J.3    Fu, Y.4    Mei, T.5
  • 35
    • 80052683698 scopus 로고    scopus 로고
    • Entity disambiguation with hierarchical topic models. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining
    • Kataria SS, Kumar KS, Rastogi RR, Sen P, Sengamedu SH (2011) Entity disambiguation with hierarchical topic models. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1037–1045
    • (2011) pp 1037–1045
    • Kataria, S.S.1    Kumar, K.S.2    Rastogi, R.R.3    Sen, P.4    Sengamedu, S.H.5
  • 36
    • 79955691000 scopus 로고    scopus 로고
    • Inferring functional modules of protein families with probabilistic topic models
    • Konietzny SG, Dietz L, Mchardy AC (2011) Inferring functional modules of protein families with probabilistic topic models. BMC Bioinform 12(12):1–14
    • (2011) BMC Bioinform , vol.12 , Issue.12 , pp. 1-14
    • Konietzny, S.G.1    Dietz, L.2    Mchardy, A.C.3
  • 37
    • 84962123433 scopus 로고    scopus 로고
    • Probabilistic topic modeling for the analysis and classification of genomic sequences
    • La Rosa M, Fiannaca A, Rizzo R, Urso A (2015) Probabilistic topic modeling for the analysis and classification of genomic sequences. BMC Bioinform 16(6):1
    • (2015) BMC Bioinform , vol.16 , Issue.6 , pp. 1
    • La Rosa, M.1    Fiannaca, A.2    Rizzo, R.3    Urso, A.4
  • 38
    • 79957489009 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems
    • Lacoste-Julien S, Sha F, Jordan M I (2009) DiscLDA: Discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems, pp 897–904
    • (2009) pp 897–904
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.I.3
  • 39
    • 84908092737 scopus 로고    scopus 로고
    • Of text and gene—using text mining methods to uncover hidden knowledge in toxicogenomics
    • Lee M, Liu Z, Kelly R, Tong W (2014) Of text and gene—using text mining methods to uncover hidden knowledge in toxicogenomics. BMC Syst Biol 8(1):1–11
    • (2014) BMC Syst Biol , vol.8 , Issue.1 , pp. 1-11
    • Lee, M.1    Liu, Z.2    Kelly, R.3    Tong, W.4
  • 40
    • 33749249041 scopus 로고    scopus 로고
    • Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of the 23rd international conference on Machine learning
    • Li W, McCallum A (2006) Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of the 23rd international conference on Machine learning, pp 577–584
    • (2006) pp 577–584
    • Li, W.1    McCallum, A.2
  • 41
    • 79951751828 scopus 로고    scopus 로고
    • Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation
    • Liu B, Liu L, Tsykin A, Goodall GJ, Green JE et al (2011) Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 26(24):3105–3111
    • (2011) Bioinformatics , vol.26 , Issue.24 , pp. 3105-3111
    • Liu, B.1    Liu, L.2    Tsykin, A.3    Goodall, G.J.4    Green, J.E.5
  • 43
    • 84862804906 scopus 로고    scopus 로고
    • Capturing correlations of multiple labels: a generative probabilistic model for multi-label learning
    • Ma H, Chen E, Xu L, Xiong H (2012) Capturing correlations of multiple labels: a generative probabilistic model for multi-label learning. Neurocomputing 92:116–123
    • (2012) Neurocomputing , vol.92 , pp. 116-123
    • Ma, H.1    Chen, E.2    Xu, L.3    Xiong, H.4
  • 44
    • 84883389053 scopus 로고    scopus 로고
    • SSHLDA: a semi-supervised hierarchical topic model. In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning
    • Mao X-L, Ming Z-Y, Chua T-S, Li S, Yan H et al (2012) SSHLDA: a semi-supervised hierarchical topic model. In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pp 800–809
    • (2012) pp 800–809
    • Mao, X.-L.1    Ming, Z.-Y.2    Chua, T.-S.3    Li, S.4    Yan, H.5
  • 46
    • 84865084338 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis for prediction of gene ontology annotations. In: The 2012 international joint conference on neural networks (IJCNN)
    • Masseroli M, Chicco D, Pinoli P (2012) Probabilistic latent semantic analysis for prediction of gene ontology annotations. In: The 2012 international joint conference on neural networks (IJCNN), pp 1–8
    • (2012) pp 1–8
    • Masseroli, M.1    Chicco, D.2    Pinoli, P.3
  • 47
    • 74549185029 scopus 로고    scopus 로고
    • Supervised topic models. In: Advances in neural information processing systems
    • Mcauliffe JD, Blei DM (2008) Supervised topic models. In: Advances in neural information processing systems, pp 121–128
    • (2008) pp 121–128
    • Mcauliffe, J.D.1    Blei, D.M.2
  • 48
    • 84988443123 scopus 로고    scopus 로고
    • McCallum AK (2002) MALLET
    • McCallum AK (2002) MALLET. http://mallet.cs.umass.edu/
  • 49
    • 77951202623 scopus 로고    scopus 로고
    • Topic models conditioned on arbitrary features with Dirichlet-multinomial regression. University of Massachusetts
    • Mimno D, McCallum A (2012) Topic models conditioned on arbitrary features with Dirichlet-multinomial regression. University of Massachusetts, Amherst 2008, pp 411–418
    • (2012) Amherst , vol.2008 , pp. 411-418
    • Mimno, D.1    McCallum, A.2
  • 50
    • 1842751687 scopus 로고    scopus 로고
    • Expectation-propagation for the generative aspect model. In: Proceedings of the eighteenth conference on Uncertainty in artificial intelligence
    • Minka T, Lafferty J (2002) Expectation-propagation for the generative aspect model. In: Proceedings of the eighteenth conference on Uncertainty in artificial intelligence, pp 352–359
    • (2002) pp 352–359
    • Minka, T.1    Lafferty, J.2
  • 51
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 13(6):47–60
    • (1996) IEEE Signal Process Mag , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 52
    • 84899024974 scopus 로고    scopus 로고
    • Lexical and hierarchical topic regression. In: Advances in neural information processing systems
    • Nguyen V-A, Boyd-Graber JL, Resnik P (2013) Lexical and hierarchical topic regression. In: Advances in neural information processing systems, pp 1106–1114
    • (2013) pp 1106–1114
    • Nguyen, V.-A.1    Boyd-Graber, J.L.2    Resnik, P.3
  • 53
    • 77957356489 scopus 로고    scopus 로고
    • Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features
    • COI: 1:CAS:528:DC%2BC3cXhtV2jtrrP, PID: 20698572
    • Pan XY, Zhang YN, Shen HB (2010) Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features. J Proteome Res 9(10):4992–5001
    • (2010) J Proteome Res , vol.9 , Issue.10 , pp. 4992-5001
    • Pan, X.Y.1    Zhang, Y.N.2    Shen, H.B.3
  • 54
    • 78049452893 scopus 로고    scopus 로고
    • Biologically-aware latent Dirichlet allocation (BaLDA) for the classification of expression microarray
    • Perina A, Lovato P, Murino V, Bicego M (2010) Biologically-aware latent Dirichlet allocation (BaLDA) for the classification of expression microarray. IAPR Int Conf Pattern Recogn Bioinform 6282(Suppl 1):230–241
    • (2010) IAPR Int Conf Pattern Recogn Bioinform , vol.6282 , pp. 230-241
    • Perina, A.1    Lovato, P.2    Murino, V.3    Bicego, M.4
  • 57
    • 84904410883 scopus 로고    scopus 로고
    • Latent Dirichlet allocation based on Gibbs sampling for gene function prediction. In: IEEE conference on computational intelligence in bioinformatics and computational biology
    • Pinoli P, Chicco D, Masseroli M (2014) Latent Dirichlet allocation based on Gibbs sampling for gene function prediction. In: IEEE conference on computational intelligence in bioinformatics and computational biology, pp 1–8
    • (2014) pp 1–8
    • Pinoli, P.1    Chicco, D.2    Masseroli, M.3
  • 59
    • 84908543129 scopus 로고    scopus 로고
    • Exploring the complexity of pathway–drug relationships using latent Dirichlet allocation
    • COI: 1:CAS:528:DC%2BC2cXhsVKmsLrJ, PID: 25218217
    • Pratanwanich N, Lio P (2014) Exploring the complexity of pathway–drug relationships using latent Dirichlet allocation. Comput Biol Chem 53:144–152
    • (2014) Comput Biol Chem , vol.53 , pp. 144-152
    • Pratanwanich, N.1    Lio, P.2
  • 60
    • 84988412758 scopus 로고    scopus 로고
    • Ramage D, Rosen E (2009) Stanford TMT
    • Ramage D, Rosen E (2009) Stanford TMT. http://nlp.stanford.edu/software/tmt/tmt-0.4/
  • 61
    • 80053392186 scopus 로고    scopus 로고
    • Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 conference on empirical methods in natural language processing
    • Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 conference on empirical methods in natural language processing, pp 248–256
    • (2009) pp 248–256
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.D.4
  • 62
    • 80052690222 scopus 로고    scopus 로고
    • Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining
    • Ramage D, Manning CD, Dumais S (2011) Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 457–465
    • (2011) pp 457–465
    • Ramage, D.1    Manning, C.D.2    Dumais, S.3
  • 63
    • 84988361385 scopus 로고    scopus 로고
    • Probabilistic topic modeling using LDA of taxonomic structure of genomic data
    • Randhave DS, Sonkamble KV (2014) Probabilistic topic modeling using LDA of taxonomic structure of genomic data. Int J Comput Sci Mobile Comput 3(5):257–262
    • (2014) Int J Comput Sci Mobile Comput , vol.3 , Issue.5 , pp. 257-262
    • Randhave, D.S.1    Sonkamble, K.V.2
  • 64
    • 84988418083 scopus 로고    scopus 로고
    • Rehurek R (2008) Gensim
    • Rehurek R (2008) Gensim. http://radimrehurek.com/gensim/
  • 66
    • 33745924500 scopus 로고    scopus 로고
    • The author-topic model for authors and documents. In: Proceedings of the 20th conference on uncertainty in artificial intelligence
    • Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2004) The author-topic model for authors and documents. In: Proceedings of the 20th conference on uncertainty in artificial intelligence, pp 487–494
    • (2004) pp 487–494
    • Rosen-Zvi, M.1    Griffiths, T.2    Steyvers, M.3    Smyth, P.4
  • 67
    • 84865237508 scopus 로고    scopus 로고
    • Statistical topic models for multi-label document classification
    • Rubin TN, Chambers A, Smyth P, Steyvers M (2011) Statistical topic models for multi-label document classification. Mach Learn 88(1–2):157–208
    • (2011) Mach Learn , vol.88 , Issue.1-2 , pp. 157-208
    • Rubin, T.N.1    Chambers, A.2    Smyth, P.3    Steyvers, M.4
  • 71
    • 84879184331 scopus 로고    scopus 로고
    • Detecting the knowledge structure of bioinformatics by mining full-text collections
    • Song M, Kim SY (2013) Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics 96(1):183–201
    • (2013) Scientometrics , vol.96 , Issue.1 , pp. 183-201
    • Song, M.1    Kim, S.Y.2
  • 72
    • 33749249312 scopus 로고    scopus 로고
    • Hierarchical dirichlet processes
    • COI: 1:CAS:528:DC%2BD2sXms1OjtQ%3D%3D
    • Teh YW, Jordan MI, Beal MJ, Blei DM (2006a) Hierarchical dirichlet processes. J Am Stat Assoc 101(476):1566–1581
    • (2006) J Am Stat Assoc , vol.101 , Issue.476 , pp. 1566-1581
    • Teh, Y.W.1    Jordan, M.I.2    Beal, M.J.3    Blei, D.M.4
  • 73
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. In: Advances in neural information processing systems
    • Teh YW, Newman D, Welling M (2006b) A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation. In: Advances in neural information processing systems, pp 1353–1360
    • (2006) pp 1353–1360
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 74
    • 34250736841 scopus 로고    scopus 로고
    • Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd international conference on Machine learning
    • Wallach HM (2006) Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd international conference on Machine learning, pp 977–984
    • (2006) pp 977–984
    • Wallach, H.M.1
  • 75
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining
    • Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 424–433
    • (2006) pp 424–433
    • Wang, X.1    McCallum, A.2
  • 76
    • 60849106648 scopus 로고    scopus 로고
    • Extract interaction detection methods from the biological literature
    • Wang H, Huang M, Zhu X (2009) Extract interaction detection methods from the biological literature. BMC Bioinform 10(1):1
    • (2009) BMC Bioinform , vol.10 , Issue.1 , pp. 1
    • Wang, H.1    Huang, M.2    Zhu, X.3
  • 77
    • 84889684471 scopus 로고    scopus 로고
    • GeneTopics-interpretation of gene sets via literature-driven topic models
    • COI: 1:CAS:528:DC%2BC3sXhvVyltLvN
    • Wang V, Xi L, Enayetallah A, Fauman E, Ziemek D (2013) GeneTopics-interpretation of gene sets via literature-driven topic models. BMC Syst Biol 7(5):1
    • (2013) BMC Syst Biol , vol.7 , Issue.5 , pp. 1
    • Wang, V.1    Xi, L.2    Enayetallah, A.3    Fauman, E.4    Ziemek, D.5
  • 78
    • 84964758635 scopus 로고    scopus 로고
    • BioTopic: a topic-driven biological literature mining system
    • Wang X, Zhu P, Liu T, Xu K (2016) BioTopic: a topic-driven biological literature mining system. Int J Data Mining Bioinform 14(4):373–386
    • (2016) Int J Data Mining Bioinform , vol.14 , Issue.4 , pp. 373-386
    • Wang, X.1    Zhu, P.2    Liu, T.3    Xu, K.4
  • 79
    • 70350681184 scopus 로고    scopus 로고
    • Efficient methods for topic model inference on streaming document collections. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining
    • Yao L, Mimno D, Mccallum A (2009) Efficient methods for topic model inference on streaming document collections. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 937–946
    • (2009) pp 937–946
    • Yao, L.1    Mimno, D.2    Mccallum, A.3
  • 80
    • 84903398946 scopus 로고    scopus 로고
    • Negative example selection for protein function prediction: the NoGO database
    • PID: 24922051
    • Youngs N, Penfold-Brown D, Bonneau R, Shasha D (2014) Negative example selection for protein function prediction: the NoGO database. PLoS Comput Biol 10(6):e1003644
    • (2014) PLoS Comput Biol , vol.10 , Issue.6
    • Youngs, N.1    Penfold-Brown, D.2    Bonneau, R.3    Shasha, D.4
  • 82
    • 84862804629 scopus 로고    scopus 로고
    • Inferring functional miRNA–mRNA regulatory modules in epithelial–mesenchymal transition with a probabilistic topic model
    • COI: 1:CAS:528:DC%2BC38Xjs1ygtrY%3D, PID: 22245099
    • Zhang J, Bing L, He J, Lei M, Li J (2012a) Inferring functional miRNA–mRNA regulatory modules in epithelial–mesenchymal transition with a probabilistic topic model. Comput Biol Med 42(4):428–437
    • (2012) Comput Biol Med , vol.42 , Issue.4 , pp. 428-437
    • Zhang, J.1    Bing, L.2    He, J.3    Lei, M.4    Li, J.5
  • 83
    • 84880795715 scopus 로고    scopus 로고
    • Automated assessment of medical training evaluation text. In: AMIA annual symposium proceedings
    • Zhang R, Pakhomov S, Gladding S, Aylward M, Borman-Shoap E et al (2012b) Automated assessment of medical training evaluation text. In: AMIA annual symposium proceedings, 1459 pp
    • (2012)
    • Zhang, R.1    Pakhomov, S.2    Gladding, S.3    Aylward, M.4    Borman-Shoap, E.5
  • 84
    • 84961509326 scopus 로고    scopus 로고
    • Exploiting topic modeling to boost metagenomic reads binning
    • Zhang R, Cheng Z, Guan J, Zhou S (2015) Exploiting topic modeling to boost metagenomic reads binning. BMC Bioinform 16(Suppl 5):1–10
    • (2015) BMC Bioinform , vol.16 , pp. 1-10
    • Zhang, R.1    Cheng, Z.2    Guan, J.3    Zhou, S.4
  • 85
    • 84869186087 scopus 로고    scopus 로고
    • MedLDA: maximum margin supervised topic models
    • Zhu J, Ahmed A, Xing EP (2012) MedLDA: maximum margin supervised topic models. J Mach Learn Res 13:2237–2278
    • (2012) J Mach Learn Res , vol.13 , pp. 2237-2278
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.