메뉴 건너뛰기




Volumn 18, Issue 7, 2009, Pages 769-779

A hybrid MPSO-BP structure adaptive algorithm for RBFNs

Author keywords

Mix encoding; Particle swarm optimization; Radial basis function neural networks; Self adapt

Indexed keywords


EID: 70350162324     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-008-0214-2     Document Type: Article
Times cited : (14)

References (36)
  • 1
    • 25844513822 scopus 로고    scopus 로고
    • Application of optimal RBF neural networks for optimization and characterization of porous materials
    • doi:10.1016/j.compchemeng.2005.07.002
    • Shahsavand A, Ahmadpour A (2005) Application of optimal RBF neural networks for optimization and characterization of porous materials. Comput Chem Eng 29(10):2134-2143. doi:10.1016/j.compchemeng.2005.07.002.
    • (2005) Comput Chem Eng , vol.29 , Issue.10 , pp. 2134-2143
    • Shahsavand, A.1    Ahmadpour, A.2
  • 2
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • doi:10.1162/neco.1991.3.2.246
    • Park J, Sandberg IW (1991) Universal approximation using radial basis functions network. Neural Comput 3(1):246-257. doi:10.1162/neco.1991.3.2.246.
    • (1991) Neural Comput , vol.3 , Issue.1 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 3
    • 46249085879 scopus 로고    scopus 로고
    • RBF neural networks for solving the inverse problem of backscattering spectra
    • doi:10.1007/s00521-007-0138-2
    • Mu T, Asoke K Nandi, RBF neural networks for solving the inverse problem of backscattering spectra. Neural Comput Appl. doi:10.1007/s00521-007-0138-2.
    • Neural Comput Appl
    • Mu, T.1    Nandi, A.K.2
  • 4
    • 4944239007 scopus 로고    scopus 로고
    • RBF neural networks for the prediction of building interference effects
    • doi:10.1016/j.compstruc.2004.05.014
    • Zhang A, Zhang L (2004) RBF neural networks for the prediction of building interference effects. Comput Struc 82:2333-2339. doi:10.1016/j.compstruc.2004.05.014.
    • (2004) Comput Struc , vol.82 , pp. 2333-2339
    • Zhang, A.1    Zhang, L.2
  • 5
    • 34047268016 scopus 로고    scopus 로고
    • Corrective action planning using RBF neural network
    • doi:10.1016/j.asoc.2006.10.007
    • Ram D, Srivastava L, Pandit M, Sharma J (2007) Corrective action planning using RBF neural network. Appl Soft Comput 7(3):1055-1063. doi:10.1016/j.asoc.2006.10.007.
    • (2007) Appl Soft Comput , vol.7 , Issue.3 , pp. 1055-1063
    • Ram, D.1    Srivastava, L.2    Pandit, M.3    Sharma, J.4
  • 7
    • 0029196051 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • doi:10.1109/72.363440
    • Chinrungrueng C, Sequin CH (1995) Optimal adaptive k-means algorithm with dynamic adjustment of learning rate. IEEE Trans Neural Netw 6(3):157-168. doi:10.1109/72.363440.
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.3 , pp. 157-168
    • Chinrungrueng, C.1    Sequin, C.H.2
  • 9
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • doi:10.1109/72.80341
    • Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(3):302-309. doi:10.1109/72.80341.
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.3 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 10
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks
    • doi:10.1109/72.478404
    • Sherstinsky A, Picard RW (1996) On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Trans Neural Netw 7(1):195-200. doi:10.1109/72.478404.
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.1 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2
  • 11
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • 5, S. J. Hanson (Ed.), Los Altos: Morgan Kaufmann
    • Hassibi B, Stork DG (1993) Second order derivatives for network pruning: optimal brain surgeon. In: Hanson SJ et al (eds) NIPS, vol 5. Morgan Kaufmann, Los Altos, pp 164-172.
    • (1993) NIPS , pp. 164-172
    • Hassibi, B.1    Stork, D.G.2
  • 12
    • 0032123243 scopus 로고    scopus 로고
    • An efficient MDL-based construction of RBF networks
    • doi:10.1016/S0893-6080(98)00051-3
    • Leonardis A, Bischof H (1998) An efficient MDL-based construction of RBF networks. Neural Netw 11(5):963-973. doi:10.1016/S0893-6080(98)00051-3.
    • (1998) Neural Netw , vol.11 , Issue.5 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 13
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
    • doi:10.1109/TSMCB.2004.834428
    • Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern 34(6):2284-2292. doi:10.1109/TSMCB.2004.834428.
    • (2004) IEEE Trans Syst Man Cybern , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 14
    • 34548158012 scopus 로고    scopus 로고
    • Improved GAP-RBF network for classification problems
    • doi: 10.1016/j.neucom.2006.07.016
    • Zhang R, Huang G, Saratchandran P, Sundararajan N (2006) Improved GAP-RBF network for classification problems. Neurocomputing. doi: 10.1016/j.neucom.2006.07.016.
    • (2006) Neurocomputing
    • Zhang, R.1    Huang, G.2    Saratchandran, P.3    Sundararajan, N.4
  • 15
    • 0742290061 scopus 로고    scopus 로고
    • A new algorithm for online structure and parameter adaptation of RBF networks
    • doi:10.1016/S0893-6080(03)00052-2
    • Alexandridis A, Sarimveis H, Bafas G (2003) A new algorithm for online structure and parameter adaptation of RBF networks. Neural Netw 16(7):1003-1017. doi:10.1016/S0893-6080(03)00052-2.
    • (2003) Neural Netw , vol.16 , Issue.7 , pp. 1003-1017
    • Alexandridis, A.1    Sarimveis, H.2    Bafas, G.3
  • 16
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • doi:10.1016/j.neucom.2005.06.014
    • Staianoa A, Tagliaferria R, Pedryczb W (2006) Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69(13-15):1570-1581. doi:10.1016/j.neucom.2005.06.014.
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1570-1581
    • Staianoa, A.1    Tagliaferria, R.2    Pedryczb, W.3
  • 17
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • doi:10.1007/BF02312392
    • Fritzke B (1994) Fast learning with incremental RBF networks. Neural Process Lett 1(1):2-5. doi:10.1007/BF02312392.
    • (1994) Neural Process Lett , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 18
    • 0032961082 scopus 로고    scopus 로고
    • A global learning algorithm for a RBF network
    • doi:10.1016/S0893-6080(98)00146-4
    • Zhu Q, Cai Y, Liu L (1996) A global learning algorithm for a RBF network. Neural Netw 12(3):527-540. doi:10.1016/S0893-6080(98)00146-4.
    • (1996) Neural Netw , vol.12 , Issue.3 , pp. 527-540
    • Zhu, Q.1    Cai, Y.2    Liu, L.3
  • 19
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • doi:10.1016/0893-6080(95)00029-Y
    • Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw 8(6):877-890. doi:10.1016/0893-6080(95)00029-Y.
    • (1995) Neural Netw , vol.8 , Issue.6 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 21
    • 34250369257 scopus 로고    scopus 로고
    • Predicting chaotic time series using hybrid particle swarm optimization algorithm
    • Liu W, Wang K (2007) Predicting chaotic time series using hybrid particle swarm optimization algorithm. Contr Decis 22(5):562-565.
    • (2007) Contr Decis , vol.22 , Issue.5 , pp. 562-565
    • Liu, W.1    Wang, K.2
  • 22
    • 34548145567 scopus 로고    scopus 로고
    • Application of RBF-PSO in nonlinear calibration for thermocouple sensor
    • Li XB, Liu D, Zuo L (2007) Application of RBF-PSO in nonlinear calibration for thermocouple sensor. Chin J Sens Actuators 20(4):933-936.
    • (2007) Chin J Sens Actuators , vol.20 , Issue.4 , pp. 933-936
    • Li, X.B.1    Liu, D.2    Zuo, L.3
  • 23
    • 33750375213 scopus 로고    scopus 로고
    • Self-generation RBFNs using evolutional PSO learning
    • doi:10.1016/j.neucom.2006.03.007
    • Feng HM (2006) Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70(1-3):241-251. doi:10.1016/j.neucom.2006.03.007.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 241-251
    • Feng, H.M.1
  • 24
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition
    • doi:10.1109/PGEC.1965.264136
    • Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition. IEEE Trans Electron Comput EC 14(2):326-334. doi:10.1109/PGEC.1965.264136.
    • (1965) IEEE Trans Electron Comput EC , vol.14 , Issue.2 , pp. 326-334
    • Cover, T.M.1
  • 25
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321-355.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 26
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • doi:10.1109/72.761725
    • Karayiannis NB (1999) Reformulated radial basis neural networks trained by gradient descent. IEEE Trans Neural Netw 10(3):657-671. doi:10.1109/72.761725.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 27
    • 0000672424 scopus 로고
    • Faster learning in networks of locally tuned processing units
    • doi:10.1162/neco.1989.1.2.281
    • Moody J, Darken C (1989) Faster learning in networks of locally tuned processing units. Neural Comput 1(3):281-294. doi:10.1162/neco.1989.1.2.281.
    • (1989) Neural Comput , vol.1 , Issue.3 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 30
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • Washington DC
    • Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceeding congress on evolutionary computation, Washington DC, pp 1951-1957.
    • (1999) Proceeding Congress on Evolutionary Computation , pp. 1951-1957
    • Clerc, M.1
  • 33
    • 0033279902 scopus 로고    scopus 로고
    • A hybrid clustering and gradient descent approach for fuzzy modeling
    • Wong CC, Chen CC (1999) A hybrid clustering and gradient descent approach for fuzzy modeling. IEEE Trans Syst Man Cybern 29(6):686-693.
    • (1999) IEEE Trans Syst Man Cybern , vol.29 , Issue.6 , pp. 686-693
    • Wong, C.C.1    Chen, C.C.2
  • 34
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • doi:10.1109/72.80202
    • Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(2):4-27. doi:10.1109/72.80202.
    • (1990) IEEE Trans Neural Netw , vol.1 , Issue.2 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 35
    • 0032445796 scopus 로고    scopus 로고
    • Online identification of nonlinear systems using Volterra polynomial basis function neural networks
    • doi:10.1016/S0893-6080(98)00100-2
    • Liu GP, Kadirkamanathan V, Billings SA (1998) Online identification of nonlinear systems using Volterra polynomial basis function neural networks. Neural Netw 11(9):1645-1657. doi:10.1016/S0893-6080(98)00100-2.
    • (1998) Neural Netw , vol.11 , Issue.9 , pp. 1645-1657
    • Liu, G.P.1    Kadirkamanathan, V.2    Billings, S.A.3
  • 36
    • 70350175721 scopus 로고    scopus 로고
    • Machine Learning Repository UCI
    • Machine Learning Repository UCI. http://www.ics.uci.edu/_mlearn/MLRepository.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.