-
1
-
-
84878652242
-
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
[1] Lovley, D.R., Nevin, K.P., Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24 (2013), 385–390, 10.1016/j.copbio.2013.02.012.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
2
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
[2] Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1, 2010, 10.1128/mBio. 00103-10.
-
(2010)
mBio
, vol.1
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
3
-
-
77957147094
-
Microbial electrosynthesis — revisiting the electrical route for microbial production
-
[3] Rabaey, K., Rozendal, R.A., Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716, 10.1038/nrmicro2422.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
4
-
-
84927559065
-
Electrifying microbes for the production of chemicals
-
[4] Tremblay, P.-L., Zhang, T., Electrifying microbes for the production of chemicals. Front. Microbiol., 6, 2015, 201, 10.3389/fmicb.2015.00201.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 201
-
-
Tremblay, P.-L.1
Zhang, T.2
-
5
-
-
84901612043
-
Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study
-
[5] Jürgensen, L., Ehimen, E.A., Born, J., Holm-Nielsen, J.B., Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass Bioenergy 66 (2014), 126–132, 10.1016/j.biombioe.2014.02.032.
-
(2014)
Biomass Bioenergy
, vol.66
, pp. 126-132
-
-
Jürgensen, L.1
Ehimen, E.A.2
Born, J.3
Holm-Nielsen, J.B.4
-
6
-
-
84941662879
-
Hybrid bioinorganic approach to solar-to-chemical conversion
-
[6] Nichols, E.M., Gallagher, J.J., Liu, C., Su, Y., Resasco, J., Yu, Y., Sun, Y., Yang, P., Chang, M.C.Y., Chang, C.J., Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 11461–11466, 10.1073/pnas.1508075112.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 11461-11466
-
-
Nichols, E.M.1
Gallagher, J.J.2
Liu, C.3
Su, Y.4
Resasco, J.5
Yu, Y.6
Sun, Y.7
Yang, P.8
Chang, M.C.Y.9
Chang, C.J.10
-
8
-
-
84929190956
-
Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
-
[8] Liu, C., Gallagher, J.J., Sakimoto, K.K., Nichols, E.M., Chang, C.J., Chang, M.C.Y., Yang, P., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15 (2015), 3634–3639, 10.1021/acs.nanolett.5b01254.
-
(2015)
Nano Lett.
, vol.15
, pp. 3634-3639
-
-
Liu, C.1
Gallagher, J.J.2
Sakimoto, K.K.3
Nichols, E.M.4
Chang, C.J.5
Chang, M.C.Y.6
Yang, P.7
-
9
-
-
84946917743
-
More efficient together
-
[9] Zhang, T., More efficient together. Science 350 (2015), 738–739, 10.1126/science.aad6452.
-
(2015)
Science
, vol.350
, pp. 738-739
-
-
Zhang, T.1
-
10
-
-
66249100237
-
Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis
-
[10] Cheng, S., Xing, D., Call, D.F., Logan, B.E., Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 43 (2009), 3953–3958, 10.1021/es803531g.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
11
-
-
84871763919
-
Sulfide-driven microbial electrosynthesis
-
[11] Gong, Y., Ebrahim, A., Feist, A.M., Embree, M., Zhang, T., Lovley, D., Zengler, K., Sulfide-driven microbial electrosynthesis. Environ. Sci. Technol. 47 (2013), 568–573, 10.1021/es303837j.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 568-573
-
-
Gong, Y.1
Ebrahim, A.2
Feist, A.M.3
Embree, M.4
Zhang, T.5
Lovley, D.6
Zengler, K.7
-
12
-
-
74649087256
-
Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
[12] Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A., Majone, M., Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101 (2010), 3085–3090, 10.1016/j.biortech.2009.12.077.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
-
13
-
-
84908021230
-
Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome
-
[13] LaBelle, E.V., Marshall, C.W., Gilbert, J.A., May, H.D., Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome. PLoS ONE, 9, 2014, e109935, 10.1371/journal.pone.0109935.
-
(2014)
PLoS ONE
, vol.9
, pp. e109935
-
-
LaBelle, E.V.1
Marshall, C.W.2
Gilbert, J.A.3
May, H.D.4
-
14
-
-
84904753488
-
A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
-
[14] Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.G., Keller, J., Flexer, V., A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2 (2014), 13093–13102, 10.1039/C4TA03101F.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13093-13102
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Chen, J.4
Wallace, G.G.5
Keller, J.6
Flexer, V.7
-
15
-
-
84947251258
-
High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide
-
[15] Jourdin, L., Grieger, T., Monetti, J., Flexer, V., Freguia, S., Lu, Y., Chen, J., Romano, M., Wallace, G.G., Keller, J., High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. Environ. Sci. Technol. 49 (2015), 13566–13574, 10.1021/acs.est.5b03821.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 13566-13574
-
-
Jourdin, L.1
Grieger, T.2
Monetti, J.3
Flexer, V.4
Freguia, S.5
Lu, Y.6
Chen, J.7
Romano, M.8
Wallace, G.G.9
Keller, J.10
-
16
-
-
84871347686
-
Improved cathode materials for microbial electrosynthesis
-
[16] Zhang, T., Nie, H., Bain, T.S., Lu, H., Cui, M., Snoeyenbos-West, O.L., Franks, A.E., Nevin, K.P., Russell, T.P., Lovley, D.R., Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6 (2013), 217–224, 10.1039/C2EE23350A.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 217-224
-
-
Zhang, T.1
Nie, H.2
Bain, T.S.3
Lu, H.4
Cui, M.5
Snoeyenbos-West, O.L.6
Franks, A.E.7
Nevin, K.P.8
Russell, T.P.9
Lovley, D.R.10
-
17
-
-
84881404831
-
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
-
[17] Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D.R., Russell, T.P., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15 (2013), 14290–14294, 10.1039/c3cp52697f.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 14290-14294
-
-
Nie, H.1
Zhang, T.2
Cui, M.3
Lu, H.4
Lovley, D.R.5
Russell, T.P.6
-
18
-
-
84954396015
-
Graphene-based electrode materials for microbial fuel cells
-
[18] Ci, S., Cai, P., Wen, Z., Li, J., Graphene-based electrode materials for microbial fuel cells. Sci. China Mater. 58 (2015), 496–509, 10.1007/s40843-015-0061-2.
-
(2015)
Sci. China Mater.
, vol.58
, pp. 496-509
-
-
Ci, S.1
Cai, P.2
Wen, Z.3
Li, J.4
-
19
-
-
84867649161
-
A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes
-
[19] Hou, J., Liu, Z., Zhang, P., A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J. Power Sources 224 (2013), 139–144, 10.1016/j.jpowsour.2012.09.091.
-
(2013)
J. Power Sources
, vol.224
, pp. 139-144
-
-
Hou, J.1
Liu, Z.2
Zhang, P.3
-
20
-
-
84927926312
-
Graphene-modified electrodes for enhancing the performance of microbial fuel cells
-
[20] Yuan, H., He, Z., Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale 7 (2015), 7022–7029, 10.1039/C4NR05637J.
-
(2015)
Nanoscale
, vol.7
, pp. 7022-7029
-
-
Yuan, H.1
He, Z.2
-
21
-
-
84973164089
-
2 by a highly structured biofilm assembled with reduced graphene oxide?tetraethylene pentamine
-
2 by a highly structured biofilm assembled with reduced graphene oxide?tetraethylene pentamine. J. Mater. Chem. A 4 (2016), 8395–8401, 10.1039/C6TA02036D.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 8395-8401
-
-
Chen, L.1
Tremblay, P.-L.2
Mohanty, S.3
Xu, K.4
Zhang, T.5
-
22
-
-
84862894222
-
3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities
-
[22] Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., Huh, Y.S., 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano 6 (2012), 4020–4028, 10.1021/nn3003345.
-
(2012)
ACS Nano
, vol.6
, pp. 4020-4028
-
-
Choi, B.G.1
Yang, M.2
Hong, W.H.3
Choi, J.W.4
Huh, Y.S.5
-
23
-
-
84863191323
-
3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing
-
[23] Dong, X., Wang, X., Wang, L., Song, H., Zhang, H., Huang, W., Chen, P., 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Appl. Mater. Interfaces 4 (2012), 3129–3133, 10.1021/am300459m.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 3129-3133
-
-
Dong, X.1
Wang, X.2
Wang, L.3
Song, H.4
Zhang, H.5
Huang, W.6
Chen, P.7
-
24
-
-
84944448032
-
Three-Dimensional Graphene-Based Nanomaterials as Electrocatalysts for Oxygen Reduction Reaction, Three-Dimensional Graphene-Based Nanomaterials as Electrocatalysts for Oxygen Reduction Reaction
-
[24] Ji, X., Zhang, X., Zhang, X., Ji, X., Zhang, X., Zhang, X., Three-Dimensional Graphene-Based Nanomaterials as Electrocatalysts for Oxygen Reduction Reaction, Three-Dimensional Graphene-Based Nanomaterials as Electrocatalysts for Oxygen Reduction Reaction. J. Nanomater., 2015, 2015, e357196, 10.1155/2015/357196.
-
(2015)
J. Nanomater.
, vol.2015
, pp. e357196
-
-
Ji, X.1
Zhang, X.2
Zhang, X.3
Ji, X.4
Zhang, X.5
Zhang, X.6
-
25
-
-
84885571702
-
High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode
-
[25] Wang, H., Wang, G., Ling, Y., Qian, F., Song, Y., Lu, X., Chen, S., Tong, Y., Li, Y., High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 5 (2013), 10283–10290, 10.1039/c3nr03487a.
-
(2013)
Nanoscale
, vol.5
, pp. 10283-10290
-
-
Wang, H.1
Wang, G.2
Ling, Y.3
Qian, F.4
Song, Y.5
Lu, X.6
Chen, S.7
Tong, Y.8
Li, Y.9
-
26
-
-
84859141906
-
Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells
-
[26] Yong, Y.-C., Dong, X.-C., Chan-Park, M.B., Song, H., Chen, P., Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano 6 (2012), 2394–2400, 10.1021/nn204656d.
-
(2012)
ACS Nano
, vol.6
, pp. 2394-2400
-
-
Yong, Y.-C.1
Dong, X.-C.2
Chan-Park, M.B.3
Song, H.4
Chen, P.5
-
27
-
-
84909953700
-
2D and 3D graphene materials: Preparation and bioelectrochemical applications
-
[27] Gao, H., Duan, H., 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens. Bioelectron. 65 (2015), 404–419, 10.1016/j.bios.2014.10.067.
-
(2015)
Biosens. Bioelectron.
, vol.65
, pp. 404-419
-
-
Gao, H.1
Duan, H.2
-
28
-
-
84946762063
-
2 to organic products
-
2 to organic products. Sci. Rep., 5, 2015, 16168, 10.1038/srep16168.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16168
-
-
Tremblay, P.-L.1
Höglund, D.2
Koza, A.3
Bonde, I.4
Zhang, T.5
-
29
-
-
0001375592
-
Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec nov. and Sporomusa ovata spec. nov
-
[29] Möller, B., Oßmer, R., Howard, B.H., Gottschalk, G., Hippe, H., Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139 (1984), 388–396, 10.1007/BF00408385.
-
(1984)
Arch. Microbiol.
, vol.139
, pp. 388-396
-
-
Möller, B.1
Oßmer, R.2
Howard, B.H.3
Gottschalk, G.4
Hippe, H.5
-
30
-
-
84887827423
-
Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst
-
[30] Zhu, N., Han, S., Gan, S., Ulstrup, J., Chi, Q., Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst. Adv. Funct. Mater. 23 (2013), 5297–5306, 10.1002/adfm.201300605.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5297-5306
-
-
Zhu, N.1
Han, S.2
Gan, S.3
Ulstrup, J.4
Chi, Q.5
-
31
-
-
84924584866
-
Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks
-
[31] Dey, R.S., Hjuler, H.A., Chi, Q., Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks. J. Mater. Chem. A 3 (2015), 6324–6329, 10.1039/C5TA01112D.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6324-6329
-
-
Dey, R.S.1
Hjuler, H.A.2
Chi, Q.3
-
32
-
-
84925935582
-
Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air
-
[32] Poreddy, R., Engelbrekt, C., Riisager, A., Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal. Sci. Technol. 5 (2015), 2467–2477, 10.1039/C4CY01622J.
-
(2015)
Catal. Sci. Technol.
, vol.5
, pp. 2467-2477
-
-
Poreddy, R.1
Engelbrekt, C.2
Riisager, A.3
-
33
-
-
76249106647
-
Reduction of graphene oxide viaL-ascorbic acid
-
[33] Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S., Reduction of graphene oxide viaL-ascorbic acid. Chem. Commun. 46 (2010), 1112–1114, 10.1039/B917705A.
-
(2010)
Chem. Commun.
, vol.46
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Zhang, J.5
Guo, S.6
-
34
-
-
79955465102
-
A graphene modified anode to improve the performance of microbial fuel cells
-
[34] Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., Yu, C., A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 196 (2011), 5402–5407, 10.1016/j.jpowsour.2011.02.067.
-
(2011)
J. Power Sources
, vol.196
, pp. 5402-5407
-
-
Zhang, Y.1
Mo, G.2
Li, X.3
Zhang, W.4
Zhang, J.5
Ye, J.6
Huang, X.7
Yu, C.8
-
35
-
-
84857750356
-
Crumpled graphene particles for microbial fuel cell electrodes
-
[35] Xiao, L., Damien, J., Luo, J., Jang, H.D., Huang, J., He, Z., Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 208 (2012), 187–192, 10.1016/j.jpowsour.2012.02.036.
-
(2012)
J. Power Sources
, vol.208
, pp. 187-192
-
-
Xiao, L.1
Damien, J.2
Luo, J.3
Jang, H.D.4
Huang, J.5
He, Z.6
-
36
-
-
84855839896
-
Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review
-
[36] Liu, X.-M., dong Huang, Z., woon Oh, S., Zhang, B., Ma, P.-C., Yuen, M.M.F., Kim, J.-K., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 72 (2012), 121–144, 10.1016/j.compscitech.2011.11.019.
-
(2012)
Compos. Sci. Technol.
, vol.72
, pp. 121-144
-
-
Liu, X.-M.1
dong Huang, Z.2
woon Oh, S.3
Zhang, B.4
Ma, P.-C.5
Yuen, M.M.F.6
Kim, J.-K.7
-
37
-
-
70350680954
-
Selling graphene by the ton
-
[37] Segal, M., Selling graphene by the ton. Nat. Nanotechnol. 4 (2009), 612–614, 10.1038/nnano.2009.279.
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 612-614
-
-
Segal, M.1
|