메뉴 건너뛰기




Volumn 60, Issue 6, 2014, Pages 414-422

Semantic feature clustering for sentiment analysis of English reviews

Author keywords

Clustering features; Feature extraction methods; Machine learning; Semantic features; Sentiment analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; EXTRACTION; FEATURE EXTRACTION; INFORMATION RETRIEVAL SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; QUALITY CONTROL; REVIEWS; SEMANTICS;

EID: 84987934285     PISSN: 03772063     EISSN: 0974780X     Source Type: Journal    
DOI: 10.1080/03772063.2014.963172     Document Type: Review
Times cited : (19)

References (25)
  • 1
    • 85040258545 scopus 로고    scopus 로고
    • Sentiment analysis and subjectivity
    • 2nd ed., N. Indurkhya, and F. J. Damerau, Eds. Boca Raton, FL: Taylor and Francis Group
    • B. Liu, “Sentiment analysis and subjectivity,” in Handbook of Natural Language Processing, 2nd ed., N. Indurkhya, and F. J. Damerau, Eds. Boca Raton, FL: Taylor and Francis Group, 2010, pp. 627-66.
    • (2010) Handbook of Natural Language Processing , pp. 627-666
    • Liu, B.1
  • 2
    • 85038601237 scopus 로고    scopus 로고
    • Sentiment analysis and opinion mining
    • Morgan & Claypool Publishers
    • B. Liu, “Sentiment analysis and opinion mining,” in Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, 2012. doi:10.2200/S00416ED1V01Y201204HLT016
    • (2012) Synthesis Lectures on Human Language Technologies
    • Liu, B.1
  • 3
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • Jan
    • B. Pang, and L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf. Retrieval, Vol. 2, no. 1-2, pp. 1-135, Jan. 2008.
    • (2008) Found. Trends Inf. Retrieval , vol.2 , Issue.1-2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 4
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews
    • ACL), Philadelphia, PA
    • P. Turney, “Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews,” in The Proceedings of the Association for Computational Linguistics (ACL), Philadelphia, PA, 2002, pp. 417-24.
    • (2002) The Proceedings of the Association for Computational Linguistics , pp. 417-424
    • Turney, P.1
  • 5
    • 78349268014 scopus 로고    scopus 로고
    • A lexicon enhanced method for sentiment classification: An experiment on online product reviews
    • Jul.-Aug
    • Y. Dang, Y. Zhang, and H. Chen, “A lexicon enhanced method for sentiment classification: An experiment on online product reviews,” IEEE Intell. Syst., Vol. 25, no. 4, pp. 46-53, Jul.-Aug. 2010.
    • (2010) IEEE Intell. Syst , vol.25 , Issue.4 , pp. 46-53
    • Dang, Y.1    Zhang, Y.2    Chen, H.3
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • I. Guyon, and A. Elisseeff, “An introduction to variable and feature selection,” J Mach. Learn. Res., Vol. 3, pp. 1157-82, Mar. 2003.
    • (2003) J Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 84875509111 scopus 로고    scopus 로고
    • Categorical probability proportion difference (CPPD): A feature selection method for sentiment classification
    • COLING 2012
    • B. Agarwal, and N. Mittal, “Categorical probability proportion difference (CPPD): A feature selection method for sentiment classification,” in Proceedings of the 2nd Workshop on Sentiment Analysis Where AI Meets Psychology, COLING 2012, 2012, pp. 17-26.
    • (2012) Proceedings of the 2Nd Workshop on Sentiment Analysis Where AI Meets Psychology , pp. 17-26
    • Agarwal, B.1    Mittal, N.2
  • 11
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using CRFs with hidden variables
    • Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA
    • T. Nakagawa, K. Inui, and S. Kurohashi, “Dependency tree-based sentiment classification using CRFs with hidden variables,” in Proceeding HLT ‘10 Human Language Technologies: Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA, 2010, pp. 786-94.
    • (2010) Proceeding HLT ‘10 Human Language Technologies , pp. 786-794
    • Nakagawa, T.1    Inui, K.2    Kurohashi, S.3
  • 13
    • 79251598720 scopus 로고    scopus 로고
    • Ensemble of feature sets and classification algorithms for sentiment classification
    • Nov
    • R. Xia, C. Zong, and S. Li, “Ensemble of feature sets and classification algorithms for sentiment classification,” J Inform. Sci., Vol. 181, no. 6, pp. 1138-52, Nov 2010.
    • (2010) J Inform. Sci , vol.181 , Issue.6 , pp. 1138-1152
    • Xia, R.1    Zong, C.2    Li, S.3
  • 14
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Aug
    • P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 24, no. 4, pp. 301-12, Aug. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.4 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 16
    • 67650243468 scopus 로고    scopus 로고
    • Feature clustering and mutual information for the selection of variables in spectral data
    • ESANN), Bruges
    • C. Krier, D. Francois, F. Rossi, and M. Verleysen, “Feature clustering and mutual information for the selection of variables in spectral data,” in European Symposium on Artificial Neural Networks (ESANN), Bruges, 2007, pp. 157-62.
    • (2007) N European Symposium on Artificial Neural Networks , pp. 157-162
    • Krier, C.1    Francois, D.2    Rossi, F.3    Verleysen, M.4
  • 17
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Jan
    • Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature subset selection algorithm for high-dimensional data,” IEEE T. Knowl. Data Eng., Vol. 25, no. 1, pp. 1-14, Jan. 2013. doi:10.1109/TKDE.2011.181
    • (2013) IEEE T. Knowl. Data Eng , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 20
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
    • B. Pang, and L. Lee, “A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts,” in ACL- 2004, Barcelona, 2004, pp. 271-78.
    • (2004) ACL-2004, Barcelona , pp. 271-278
    • Pang, B.1    Lee, L.2
  • 21
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification,” in ACL, Prague, 2007, pp. 440-7.
    • (2007) ACL, Prague , pp. 440-447
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 22
    • 85041441290 scopus 로고    scopus 로고
    • Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews
    • ACL), Sydney
    • V. Ng, S. Dasgupta, and S. M. N. Arifin, “Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews,” in Proceedings of the Association for Computational Linguistics (ACL), Sydney, 2006, pp. 611-8.
    • (2006) Proceedings of the Association for Computational Linguistics , pp. 611-618
    • Ng, V.1    Dasgupta, S.2    Arifin, S.M.N.3
  • 25
    • 84857165397 scopus 로고    scopus 로고
    • Intelligent feature selection for opinion classification
    • Jul./Aug
    • A. Abbasi, “Intelligent feature selection for opinion classification,” IEEE Intell. Syst., Vol. 25, no. 4, Jul./Aug. 2010, pp. 75-9.
    • (2010) IEEE Intell. Syst , vol.25 , Issue.4 , pp. 75-79
    • Abbasi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.