-
1
-
-
77956344128
-
Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds
-
Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr. 2010;4(3):377–81.
-
(2010)
Cell Adhes Migr
, vol.4
, Issue.3
, pp. 377-381
-
-
Murphy, C.M.1
O’Brien, F.J.2
-
2
-
-
0027595948
-
Tissue engineering
-
COI: 1:CAS:528:DyaK3sXis1Sktrs%3D, PID: 8493529
-
Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
3
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
COI: 1:CAS:528:DC%2BD2MXjs1Wnsrc%3D, PID: 15860204
-
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
4
-
-
84941750462
-
Triggerable degradation of polyurethanes for tissue engineering applications
-
COI: 1:CAS:528:DC%2BC2MXhtl2qu7fN, PID: 26312436
-
Xu C et al. Triggerable degradation of polyurethanes for tissue engineering applications. ACS Appl Mater Interfaces. 2015;7(36):20377–88.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, Issue.36
, pp. 20377-20388
-
-
Xu, C.1
-
5
-
-
0042626603
-
Polymeric growth factor delivery strategies for tissue engineering
-
COI: 1:CAS:528:DC%2BD3sXmtVGrt7s%3D, PID: 12948005
-
Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20(8):1103–12.
-
(2003)
Pharm Res
, vol.20
, Issue.8
, pp. 1103-1112
-
-
Chen, R.R.1
Mooney, D.J.2
-
6
-
-
0041559949
-
RGD modified polymers: biomaterials for stimulated cell adhesion and beyond
-
COI: 1:CAS:528:DC%2BD3sXmtFansLg%3D, PID: 12922151
-
Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.
-
(2003)
Biomaterials
, vol.24
, Issue.24
, pp. 4385-4415
-
-
Hersel, U.1
Dahmen, C.2
Kessler, H.3
-
7
-
-
57049157621
-
Scaffolding in tissue engineering: general approaches and tissue-specific considerations
-
COI: 1:CAS:528:DC%2BD1cXhsVyntbzM, PID: 19005702
-
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17 Suppl 4:467–79.
-
(2008)
Eur Spine J
, vol.17
, pp. 467-479
-
-
Chan, B.P.1
Leong, K.W.2
-
8
-
-
2442426201
-
The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis
-
COI: 1:CAS:528:DC%2BD2cXjvFOhtb4%3D, PID: 15147819
-
Sung HJ et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42.
-
(2004)
Biomaterials
, vol.25
, Issue.26
, pp. 5735-5742
-
-
Sung, H.J.1
-
9
-
-
84855723748
-
Poly-lactic acid synthesis for application in biomedical devices—a review
-
COI: 1:CAS:528:DC%2BC38XpsFyntQ%3D%3D, PID: 21756992
-
Lasprilla AJR et al. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.
-
(2012)
Biotechnol Adv
, vol.30
, Issue.1
, pp. 321-328
-
-
Lasprilla, A.J.R.1
-
10
-
-
84893663807
-
Silk proteins for biomedical applications: bioengineering perspectives
-
COI: 1:CAS:528:DC%2BC3sXhsFaksLjN
-
Kundu B et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014;39(2):251–67.
-
(2014)
Prog Polym Sci
, vol.39
, Issue.2
, pp. 251-267
-
-
Kundu, B.1
-
11
-
-
1842484779
-
Designing materials for biology and medicine
-
COI: 1:CAS:528:DC%2BD2cXis1GksrY%3D, PID: 15057821
-
Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.
-
(2004)
Nature
, vol.428
, Issue.6982
, pp. 487-492
-
-
Langer, R.1
Tirrell, D.A.2
-
12
-
-
84897503621
-
Extracellular matrix as an inductive scaffold for functional tissue reconstruction
-
COI: 1:CAS:528:DC%2BC3sXitVShu7nN, PID: 24291155
-
Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268–85.
-
(2014)
Transl Res
, vol.163
, Issue.4
, pp. 268-285
-
-
Brown, B.N.1
Badylak, S.F.2
-
13
-
-
84949255411
-
Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM
-
Schella JY et al. Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM. Biomaterials. 2015;77:120–9.
-
(2015)
Biomaterials
, vol.77
, pp. 120-129
-
-
Schella, J.Y.1
-
14
-
-
19644367664
-
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
-
COI: 1:CAS:528:DC%2BD2MXhsFGmtg%3D%3D, PID: 15637621
-
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.
-
(2005)
Nat Biotechnol
, vol.23
, Issue.1
, pp. 47-55
-
-
Lutolf, M.P.1
Hubbell, J.A.2
-
15
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
COI: 1:CAS:528:DC%2BD28Xpt1aktbg%3D, PID: 16923388
-
Engler AJ et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.
-
(2006)
Cell
, vol.126
, Issue.4
, pp. 677-689
-
-
Engler, A.J.1
-
17
-
-
68049129733
-
Mechanical response of silk crystalline units from force-distribution analysis
-
COI: 1:CAS:528:DC%2BD1MXnvVelsrg%3D, PID: 19450471
-
Xiao S et al. Mechanical response of silk crystalline units from force-distribution analysis. Biophys J. 2009;96(10):3997–4005.
-
(2009)
Biophys J
, vol.96
, Issue.10
, pp. 3997-4005
-
-
Xiao, S.1
-
18
-
-
33947664948
-
Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites
-
PID: 16924611
-
Xu HH et al. Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J Biomed Mater Res B Appl Biomater. 2007;81(1):116–25.
-
(2007)
J Biomed Mater Res B Appl Biomater
, vol.81
, Issue.1
, pp. 116-125
-
-
Xu, H.H.1
-
19
-
-
33947424685
-
Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach
-
COI: 1:CAS:528:DC%2BD2sXjtFygt78%3D
-
Vozzi G, Ahluwalia A. Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem. 2007;17(13):1248–54.
-
(2007)
J Mater Chem
, vol.17
, Issue.13
, pp. 1248-1254
-
-
Vozzi, G.1
Ahluwalia, A.2
-
20
-
-
79952189467
-
Gradient biomaterials for soft-to-hard interface tissue engineering
-
COI: 1:CAS:528:DC%2BC3MXisFaiurw%3D, PID: 21232635, This review focusess on fabrication techniques for generating gradient biomaterials. It explores specific experimental examples of gradient tissue engineering from soft tissues (e.g. cartilage) to hard tissues (e.g. bone)
-
Seidi A et al. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 2011;7(4):1441–51. This review focusess on fabrication techniques for generating gradient biomaterials. It explores specific experimental examples of gradient tissue engineering from soft tissues (e.g. cartilage) to hard tissues (e.g. bone).
-
(2011)
Acta Biomater
, vol.7
, Issue.4
, pp. 1441-1451
-
-
Seidi, A.1
-
21
-
-
84887925650
-
Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size
-
COI: 1:CAS:528:DC%2BC3sXhslygsrfO, This review focuses on fabrication techniques for generating different pore sizes, porosity, and graded porous networks. It also evaluates how scaffold pore size and porosity directs cellular responses and the resulting mechanical properties
-
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev. 2013;19(6):485–502. This review focuses on fabrication techniques for generating different pore sizes, porosity, and graded porous networks. It also evaluates how scaffold pore size and porosity directs cellular responses and the resulting mechanical properties.
-
(2013)
Tissue Eng B Rev
, vol.19
, Issue.6
, pp. 485-502
-
-
Loh, Q.L.1
Choong, C.2
-
22
-
-
84867403318
-
A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs
-
COI: 1:CAS:528:DC%2BC38XhsVegsL3P, PID: 23036961
-
Wray LS et al. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33(36):9214–24.
-
(2012)
Biomaterials
, vol.33
, Issue.36
, pp. 9214-9224
-
-
Wray, L.S.1
-
23
-
-
33749460831
-
Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds
-
COI: 1:CAS:528:DC%2BD28XptlOht7g%3D, PID: 16968150
-
Radisic M et al. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 2006;12(8):2077–91.
-
(2006)
Tissue Eng
, vol.12
, Issue.8
, pp. 2077-2091
-
-
Radisic, M.1
-
24
-
-
33847289806
-
Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers
-
COI: 1:CAS:528:DC%2BD28XhtlCqtr%2FO, PID: 17291078
-
Nazhat SN et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules. 2007;8(2):543–51.
-
(2007)
Biomacromolecules
, vol.8
, Issue.2
, pp. 543-551
-
-
Nazhat, S.N.1
-
25
-
-
33847019597
-
Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography
-
COI: 1:CAS:528:DC%2BD2sXhvVOks7c%3D, PID: 17518566
-
Bagnaninchi PO et al. Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. Tissue Eng. 2007;13(2):323–31.
-
(2007)
Tissue Eng
, vol.13
, Issue.2
, pp. 323-331
-
-
Bagnaninchi, P.O.1
-
26
-
-
26844534722
-
Multiple-channel scaffolds to promote spinal cord axon regeneration
-
COI: 1:CAS:528:DC%2BD2MXhtFakurfP, PID: 16137759
-
Moore MJ et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006;27(3):419–29.
-
(2006)
Biomaterials
, vol.27
, Issue.3
, pp. 419-429
-
-
Moore, M.J.1
-
27
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
COI: 1:CAS:528:DC%2BC38Xptlaiur0%3D, PID: 22645376
-
Zheng Y et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A. 2012;109(24):9342–7.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.24
, pp. 9342-9347
-
-
Zheng, Y.1
-
28
-
-
84883342307
-
Formation of microvascular networks in vitro
-
PID: 23989676
-
Morgan JP et al. Formation of microvascular networks in vitro. Nat Protoc. 2013;8(9):1820–36.
-
(2013)
Nat Protoc
, vol.8
, Issue.9
, pp. 1820-1836
-
-
Morgan, J.P.1
-
29
-
-
84882253484
-
Integrating biological vasculature into a multi-organ-chip microsystem
-
COI: 1:CAS:528:DC%2BC3sXht1GhtbfK, PID: 23743770
-
Schimek K et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip. 2013;13(18):3588–98.
-
(2013)
Lab Chip
, vol.13
, Issue.18
, pp. 3588-3598
-
-
Schimek, K.1
-
30
-
-
84904718407
-
A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues
-
PID: 24465401
-
Tiruvannamalai-Annamalai R, Armant DR, Matthew HW. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS One. 2014;9(1):e84287.
-
(2014)
PLoS One
, vol.9
, Issue.1
-
-
Tiruvannamalai-Annamalai, R.1
Armant, D.R.2
Matthew, H.W.3
-
31
-
-
84897872570
-
Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models
-
PID: 24643064
-
Chwalek K et al. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep. 2014;4:4414.
-
(2014)
Sci Rep
, vol.4
, pp. 4414
-
-
Chwalek, K.1
-
32
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
COI: 1:CAS:528:DC%2BD3cXmvFyls7k%3D, PID: 11071603
-
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.
-
(2000)
Biomaterials
, vol.21
, Issue.24
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
33
-
-
5544292026
-
Bioresorbability and biocompatibility of aliphatic polyesters
-
COI: 1:CAS:528:DyaK3sXhtlWrs7o%3D
-
Vert M et al. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med. 1992;3(6):432–46.
-
(1992)
J Mater Sci Mater Med
, vol.3
, Issue.6
, pp. 432-446
-
-
Vert, M.1
-
34
-
-
0342803709
-
Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells
-
COI: 1:CAS:528:DC%2BD3cXksVKnt74%3D, PID: 10806116
-
Stringa E et al. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells. J Cell Sci. 2000;113(11):2055–64.
-
(2000)
J Cell Sci
, vol.113
, Issue.11
, pp. 2055-2064
-
-
Stringa, E.1
-
35
-
-
46049091776
-
Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells
-
COI: 1:CAS:528:DC%2BD1cXntVyhurs%3D, PID: 18543914
-
Wu G et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc. 2008;130(26):8175–7.
-
(2008)
J Am Chem Soc
, vol.130
, Issue.26
, pp. 8175-8177
-
-
Wu, G.1
-
36
-
-
84876552648
-
Synthesis and degradation of backbone photodegradable polyester dendrimers
-
COI: 1:CAS:528:DC%2BC3sXltVCltbs%3D, PID: 23545015, This article demonstrates a well-defined, fully photodegradable material suited for triggerable biological degradation
-
Nazemi A, Schon TB, Gillies ER. Synthesis and degradation of backbone photodegradable polyester dendrimers. Org Lett. 2013;15(8):1830–3. This article demonstrates a well-defined, fully photodegradable material suited for triggerable biological degradation.
-
(2013)
Org Lett
, vol.15
, Issue.8
, pp. 1830-1833
-
-
Nazemi, A.1
Schon, T.B.2
Gillies, E.R.3
-
37
-
-
77952291540
-
A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery
-
COI: 1:CAS:528:DC%2BC3cXltFKmsrc%3D, PID: 20347484
-
Epstein-Barash H et al. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials. 2010;31(19):5208–17.
-
(2010)
Biomaterials
, vol.31
, Issue.19
, pp. 5208-5217
-
-
Epstein-Barash, H.1
-
38
-
-
0024748170
-
Ultrasound-enhanced polymer degradation and release of incorporated substances
-
COI: 1:CAS:528:DyaK3cXmt1CgtA%3D%3D, PID: 2813349
-
Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A. 1989;86(20):7663–6.
-
(1989)
Proc Natl Acad Sci U S A
, vol.86
, Issue.20
, pp. 7663-7666
-
-
Kost, J.1
Leong, K.2
Langer, R.3
-
39
-
-
84905851550
-
Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes
-
COI: 1:CAS:528:DC%2BC2cXhtFWjtb3I, PID: 25003560
-
Fu HL et al. Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes. Biomacromolecules. 2014;15(8):2924–32.
-
(2014)
Biomacromolecules
, vol.15
, Issue.8
, pp. 2924-2932
-
-
Fu, H.L.1
-
40
-
-
0037965624
-
Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics
-
COI: 1:CAS:528:DC%2BD3sXjs1yitLc%3D, PID: 12686696
-
Lutolf MP et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100(9):5413–8.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.9
, pp. 5413-5418
-
-
Lutolf, M.P.1
-
41
-
-
19444372418
-
Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics
-
PID: 15984055
-
El-Sayed ME, Hoffman AS, Stayton PS. Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics. J Control Release. 2005;104(2):417–27.
-
(2005)
J Control Release
, vol.104
, Issue.2
, pp. 417-427
-
-
El-Sayed, M.E.1
Hoffman, A.S.2
Stayton, P.S.3
-
42
-
-
84951858657
-
Hydrogels for therapeutic cardiovascular angiogenesis
-
PID: 26212158
-
Rufaihah AJ, Seliktar D. Hydrogels for therapeutic cardiovascular angiogenesis. Adv Drug Deliv Rev. 2015;96:31–9.
-
(2015)
Adv Drug Deliv Rev
, vol.96
, pp. 31-39
-
-
Rufaihah, A.J.1
Seliktar, D.2
-
43
-
-
0034122571
-
Growth factor delivery for tissue engineering
-
COI: 1:CAS:528:DC%2BD3cXksVGqtbg%3D, PID: 10888299
-
Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res. 2000;17(5):497–504.
-
(2000)
Pharm Res
, vol.17
, Issue.5
, pp. 497-504
-
-
Babensee, J.E.1
McIntire, L.V.2
Mikos, A.G.3
-
44
-
-
80053997654
-
Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent
-
COI: 1:CAS:528:DC%2BC3MXht1ylsb3M, PID: 21736941
-
Yang Y et al. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Eur J Pharm Biopharm. 2011;79(3):519–25.
-
(2011)
Eur J Pharm Biopharm
, vol.79
, Issue.3
, pp. 519-525
-
-
Yang, Y.1
-
45
-
-
84945900154
-
Modulation of vincristine and doxorubicin binding and release from silk films
-
COI: 1:CAS:528:DC%2BC2MXhslGjsbfN, PID: 26500149
-
Coburn JM, Na E, Kaplan DL. Modulation of vincristine and doxorubicin binding and release from silk films. J Control Release. 2015;220(Pt A):229–38.
-
(2015)
J Control Release
, vol.220
, pp. 229-238
-
-
Coburn, J.M.1
Na, E.2
Kaplan, D.L.3
-
46
-
-
79956207489
-
Silk fibroin biomaterials for controlled release drug delivery
-
COI: 1:CAS:528:DC%2BC3MXmtlWrtb8%3D, PID: 21453189
-
Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011;8(6):797–811.
-
(2011)
Expert Opin Drug Deliv
, vol.8
, Issue.6
, pp. 797-811
-
-
Pritchard, E.M.1
Kaplan, D.L.2
-
47
-
-
84937064628
-
Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery
-
COI: 1:CAS:528:DC%2BC2MXisl2nsL0%3D, PID: 25689115
-
Coburn JM, Kaplan DL. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug Chem. 2015;26(7):1212–23.
-
(2015)
Bioconjug Chem
, vol.26
, Issue.7
, pp. 1212-1223
-
-
Coburn, J.M.1
Kaplan, D.L.2
-
48
-
-
84954233553
-
Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration
-
COI: 1:CAS:528:DC%2BC2MXhs1eqsr3J, PID: 26462137
-
Ma C et al. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv Healthc Mater. 2015;4:2699–708.
-
(2015)
Adv Healthc Mater
, vol.4
, pp. 2699-2708
-
-
Ma, C.1
-
49
-
-
84939431404
-
A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C
-
COI: 1:CAS:528:DC%2BC2MXhsVegurzF, PID: 26277717
-
Zhu J et al. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C. Colloids Surf B: Biointerfaces. 2015;135:416–24.
-
(2015)
Colloids Surf B: Biointerfaces
, vol.135
, pp. 416-424
-
-
Zhu, J.1
-
50
-
-
84898547734
-
Spray-painted human fibronectin coating as an effective strategy to enhance graft ligamentization of a polyethylene terephthalate artificial ligament
-
COI: 1:CAS:528:DC%2BC2cXivFyjtLk%3D, PID: 24557075
-
Li H et al. Spray-painted human fibronectin coating as an effective strategy to enhance graft ligamentization of a polyethylene terephthalate artificial ligament. Biotechnol Lett. 2014;36(5):1079–88.
-
(2014)
Biotechnol Lett
, vol.36
, Issue.5
, pp. 1079-1088
-
-
Li, H.1
-
51
-
-
84906241284
-
Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering
-
PID: 25015608
-
Sharifiaghdas F et al. Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering. Urol J. 2014;11(3):1620–8.
-
(2014)
Urol J
, vol.11
, Issue.3
, pp. 1620-1628
-
-
Sharifiaghdas, F.1
-
52
-
-
84921260754
-
Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration
-
COI: 1:CAS:528:DC%2BC2MXivVSjtQ%3D%3D, PID: 25617133
-
Lee DY et al. Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration. Biomaterials. 2015;44:134–42.
-
(2015)
Biomaterials
, vol.44
, pp. 134-142
-
-
Lee, D.Y.1
-
53
-
-
0029775681
-
RGD and other recognition sequences for integrins
-
COI: 1:CAS:528:DyaK28XnsFClur0%3D, PID: 8970741
-
Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.
-
(1996)
Annu Rev Cell Dev Biol
, vol.12
, pp. 697-715
-
-
Ruoslahti, E.1
-
54
-
-
84921869422
-
Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering
-
COI: 1:CAS:528:DC%2BC2cXitFaiu7fF, PID: 25463503, This article demonstrates an example of a hybrid scaffold. An extracellular matrix / fibrin scaffold was generated that explores the effects of exploiting both composition and mechanical properties to control the differentiation of vascular and cardiac components
-
Williams C et al. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95. This article demonstrates an example of a hybrid scaffold. An extracellular matrix / fibrin scaffold was generated that explores the effects of exploiting both composition and mechanical properties to control the differentiation of vascular and cardiac components.
-
(2015)
Acta Biomater
, vol.14
, pp. 84-95
-
-
Williams, C.1
|