메뉴 건너뛰기




Volumn 2, Issue 2, 2016, Pages 140-146

Engineering Biomaterials for Enhanced Tissue Regeneration

Author keywords

Biodegradable; Biomaterial; Scaffold; Tissue engineering; Tissue regeneration

Indexed keywords

BIOMATERIAL; BONE MORPHOGENETIC PROTEIN 2; COLLAGEN; ELASTIN; POLYGLACTIN; POLYLACTIC ACID;

EID: 84986563325     PISSN: None     EISSN: 21987866     Source Type: Journal    
DOI: 10.1007/s40778-016-0039-3     Document Type: Review
Times cited : (38)

References (54)
  • 1
    • 77956344128 scopus 로고    scopus 로고
    • Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds
    • Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr. 2010;4(3):377–81.
    • (2010) Cell Adhes Migr , vol.4 , Issue.3 , pp. 377-381
    • Murphy, C.M.1    O’Brien, F.J.2
  • 2
    • 0027595948 scopus 로고
    • Tissue engineering
    • COI: 1:CAS:528:DyaK3sXis1Sktrs%3D, PID: 8493529
    • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
    • (1993) Science , vol.260 , Issue.5110 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 3
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • COI: 1:CAS:528:DC%2BD2MXjs1Wnsrc%3D, PID: 15860204
    • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.
    • (2005) Biomaterials , vol.26 , Issue.27 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 4
    • 84941750462 scopus 로고    scopus 로고
    • Triggerable degradation of polyurethanes for tissue engineering applications
    • COI: 1:CAS:528:DC%2BC2MXhtl2qu7fN, PID: 26312436
    • Xu C et al. Triggerable degradation of polyurethanes for tissue engineering applications. ACS Appl Mater Interfaces. 2015;7(36):20377–88.
    • (2015) ACS Appl Mater Interfaces , vol.7 , Issue.36 , pp. 20377-20388
    • Xu, C.1
  • 5
    • 0042626603 scopus 로고    scopus 로고
    • Polymeric growth factor delivery strategies for tissue engineering
    • COI: 1:CAS:528:DC%2BD3sXmtVGrt7s%3D, PID: 12948005
    • Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20(8):1103–12.
    • (2003) Pharm Res , vol.20 , Issue.8 , pp. 1103-1112
    • Chen, R.R.1    Mooney, D.J.2
  • 6
    • 0041559949 scopus 로고    scopus 로고
    • RGD modified polymers: biomaterials for stimulated cell adhesion and beyond
    • COI: 1:CAS:528:DC%2BD3sXmtFansLg%3D, PID: 12922151
    • Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.
    • (2003) Biomaterials , vol.24 , Issue.24 , pp. 4385-4415
    • Hersel, U.1    Dahmen, C.2    Kessler, H.3
  • 7
    • 57049157621 scopus 로고    scopus 로고
    • Scaffolding in tissue engineering: general approaches and tissue-specific considerations
    • COI: 1:CAS:528:DC%2BD1cXhsVyntbzM, PID: 19005702
    • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17 Suppl 4:467–79.
    • (2008) Eur Spine J , vol.17 , pp. 467-479
    • Chan, B.P.1    Leong, K.W.2
  • 8
    • 2442426201 scopus 로고    scopus 로고
    • The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis
    • COI: 1:CAS:528:DC%2BD2cXjvFOhtb4%3D, PID: 15147819
    • Sung HJ et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42.
    • (2004) Biomaterials , vol.25 , Issue.26 , pp. 5735-5742
    • Sung, H.J.1
  • 9
    • 84855723748 scopus 로고    scopus 로고
    • Poly-lactic acid synthesis for application in biomedical devices—a review
    • COI: 1:CAS:528:DC%2BC38XpsFyntQ%3D%3D, PID: 21756992
    • Lasprilla AJR et al. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.
    • (2012) Biotechnol Adv , vol.30 , Issue.1 , pp. 321-328
    • Lasprilla, A.J.R.1
  • 10
    • 84893663807 scopus 로고    scopus 로고
    • Silk proteins for biomedical applications: bioengineering perspectives
    • COI: 1:CAS:528:DC%2BC3sXhsFaksLjN
    • Kundu B et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014;39(2):251–67.
    • (2014) Prog Polym Sci , vol.39 , Issue.2 , pp. 251-267
    • Kundu, B.1
  • 11
    • 1842484779 scopus 로고    scopus 로고
    • Designing materials for biology and medicine
    • COI: 1:CAS:528:DC%2BD2cXis1GksrY%3D, PID: 15057821
    • Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.
    • (2004) Nature , vol.428 , Issue.6982 , pp. 487-492
    • Langer, R.1    Tirrell, D.A.2
  • 12
    • 84897503621 scopus 로고    scopus 로고
    • Extracellular matrix as an inductive scaffold for functional tissue reconstruction
    • COI: 1:CAS:528:DC%2BC3sXitVShu7nN, PID: 24291155
    • Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268–85.
    • (2014) Transl Res , vol.163 , Issue.4 , pp. 268-285
    • Brown, B.N.1    Badylak, S.F.2
  • 13
    • 84949255411 scopus 로고    scopus 로고
    • Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM
    • Schella JY et al. Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM. Biomaterials. 2015;77:120–9.
    • (2015) Biomaterials , vol.77 , pp. 120-129
    • Schella, J.Y.1
  • 14
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • COI: 1:CAS:528:DC%2BD2MXhsFGmtg%3D%3D, PID: 15637621
    • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.
    • (2005) Nat Biotechnol , vol.23 , Issue.1 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 15
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • COI: 1:CAS:528:DC%2BD28Xpt1aktbg%3D, PID: 16923388
    • Engler AJ et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.
    • (2006) Cell , vol.126 , Issue.4 , pp. 677-689
    • Engler, A.J.1
  • 17
    • 68049129733 scopus 로고    scopus 로고
    • Mechanical response of silk crystalline units from force-distribution analysis
    • COI: 1:CAS:528:DC%2BD1MXnvVelsrg%3D, PID: 19450471
    • Xiao S et al. Mechanical response of silk crystalline units from force-distribution analysis. Biophys J. 2009;96(10):3997–4005.
    • (2009) Biophys J , vol.96 , Issue.10 , pp. 3997-4005
    • Xiao, S.1
  • 18
    • 33947664948 scopus 로고    scopus 로고
    • Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites
    • PID: 16924611
    • Xu HH et al. Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J Biomed Mater Res B Appl Biomater. 2007;81(1):116–25.
    • (2007) J Biomed Mater Res B Appl Biomater , vol.81 , Issue.1 , pp. 116-125
    • Xu, H.H.1
  • 19
    • 33947424685 scopus 로고    scopus 로고
    • Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach
    • COI: 1:CAS:528:DC%2BD2sXjtFygt78%3D
    • Vozzi G, Ahluwalia A. Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem. 2007;17(13):1248–54.
    • (2007) J Mater Chem , vol.17 , Issue.13 , pp. 1248-1254
    • Vozzi, G.1    Ahluwalia, A.2
  • 20
    • 79952189467 scopus 로고    scopus 로고
    • Gradient biomaterials for soft-to-hard interface tissue engineering
    • COI: 1:CAS:528:DC%2BC3MXisFaiurw%3D, PID: 21232635, This review focusess on fabrication techniques for generating gradient biomaterials. It explores specific experimental examples of gradient tissue engineering from soft tissues (e.g. cartilage) to hard tissues (e.g. bone)
    • Seidi A et al. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 2011;7(4):1441–51. This review focusess on fabrication techniques for generating gradient biomaterials. It explores specific experimental examples of gradient tissue engineering from soft tissues (e.g. cartilage) to hard tissues (e.g. bone).
    • (2011) Acta Biomater , vol.7 , Issue.4 , pp. 1441-1451
    • Seidi, A.1
  • 21
    • 84887925650 scopus 로고    scopus 로고
    • Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size
    • COI: 1:CAS:528:DC%2BC3sXhslygsrfO, This review focuses on fabrication techniques for generating different pore sizes, porosity, and graded porous networks. It also evaluates how scaffold pore size and porosity directs cellular responses and the resulting mechanical properties
    • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev. 2013;19(6):485–502. This review focuses on fabrication techniques for generating different pore sizes, porosity, and graded porous networks. It also evaluates how scaffold pore size and porosity directs cellular responses and the resulting mechanical properties.
    • (2013) Tissue Eng B Rev , vol.19 , Issue.6 , pp. 485-502
    • Loh, Q.L.1    Choong, C.2
  • 22
    • 84867403318 scopus 로고    scopus 로고
    • A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs
    • COI: 1:CAS:528:DC%2BC38XhsVegsL3P, PID: 23036961
    • Wray LS et al. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33(36):9214–24.
    • (2012) Biomaterials , vol.33 , Issue.36 , pp. 9214-9224
    • Wray, L.S.1
  • 23
    • 33749460831 scopus 로고    scopus 로고
    • Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds
    • COI: 1:CAS:528:DC%2BD28XptlOht7g%3D, PID: 16968150
    • Radisic M et al. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 2006;12(8):2077–91.
    • (2006) Tissue Eng , vol.12 , Issue.8 , pp. 2077-2091
    • Radisic, M.1
  • 24
    • 33847289806 scopus 로고    scopus 로고
    • Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers
    • COI: 1:CAS:528:DC%2BD28XhtlCqtr%2FO, PID: 17291078
    • Nazhat SN et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules. 2007;8(2):543–51.
    • (2007) Biomacromolecules , vol.8 , Issue.2 , pp. 543-551
    • Nazhat, S.N.1
  • 25
    • 33847019597 scopus 로고    scopus 로고
    • Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography
    • COI: 1:CAS:528:DC%2BD2sXhvVOks7c%3D, PID: 17518566
    • Bagnaninchi PO et al. Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. Tissue Eng. 2007;13(2):323–31.
    • (2007) Tissue Eng , vol.13 , Issue.2 , pp. 323-331
    • Bagnaninchi, P.O.1
  • 26
    • 26844534722 scopus 로고    scopus 로고
    • Multiple-channel scaffolds to promote spinal cord axon regeneration
    • COI: 1:CAS:528:DC%2BD2MXhtFakurfP, PID: 16137759
    • Moore MJ et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006;27(3):419–29.
    • (2006) Biomaterials , vol.27 , Issue.3 , pp. 419-429
    • Moore, M.J.1
  • 27
    • 84862197029 scopus 로고    scopus 로고
    • In vitro microvessels for the study of angiogenesis and thrombosis
    • COI: 1:CAS:528:DC%2BC38Xptlaiur0%3D, PID: 22645376
    • Zheng Y et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A. 2012;109(24):9342–7.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.24 , pp. 9342-9347
    • Zheng, Y.1
  • 28
    • 84883342307 scopus 로고    scopus 로고
    • Formation of microvascular networks in vitro
    • PID: 23989676
    • Morgan JP et al. Formation of microvascular networks in vitro. Nat Protoc. 2013;8(9):1820–36.
    • (2013) Nat Protoc , vol.8 , Issue.9 , pp. 1820-1836
    • Morgan, J.P.1
  • 29
    • 84882253484 scopus 로고    scopus 로고
    • Integrating biological vasculature into a multi-organ-chip microsystem
    • COI: 1:CAS:528:DC%2BC3sXht1GhtbfK, PID: 23743770
    • Schimek K et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip. 2013;13(18):3588–98.
    • (2013) Lab Chip , vol.13 , Issue.18 , pp. 3588-3598
    • Schimek, K.1
  • 30
    • 84904718407 scopus 로고    scopus 로고
    • A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues
    • PID: 24465401
    • Tiruvannamalai-Annamalai R, Armant DR, Matthew HW. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS One. 2014;9(1):e84287.
    • (2014) PLoS One , vol.9 , Issue.1
    • Tiruvannamalai-Annamalai, R.1    Armant, D.R.2    Matthew, H.W.3
  • 31
    • 84897872570 scopus 로고    scopus 로고
    • Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models
    • PID: 24643064
    • Chwalek K et al. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep. 2014;4:4414.
    • (2014) Sci Rep , vol.4 , pp. 4414
    • Chwalek, K.1
  • 32
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • COI: 1:CAS:528:DC%2BD3cXmvFyls7k%3D, PID: 11071603
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.
    • (2000) Biomaterials , vol.21 , Issue.24 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 33
    • 5544292026 scopus 로고
    • Bioresorbability and biocompatibility of aliphatic polyesters
    • COI: 1:CAS:528:DyaK3sXhtlWrs7o%3D
    • Vert M et al. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med. 1992;3(6):432–46.
    • (1992) J Mater Sci Mater Med , vol.3 , Issue.6 , pp. 432-446
    • Vert, M.1
  • 34
    • 0342803709 scopus 로고    scopus 로고
    • Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells
    • COI: 1:CAS:528:DC%2BD3cXksVKnt74%3D, PID: 10806116
    • Stringa E et al. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells. J Cell Sci. 2000;113(11):2055–64.
    • (2000) J Cell Sci , vol.113 , Issue.11 , pp. 2055-2064
    • Stringa, E.1
  • 35
    • 46049091776 scopus 로고    scopus 로고
    • Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells
    • COI: 1:CAS:528:DC%2BD1cXntVyhurs%3D, PID: 18543914
    • Wu G et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc. 2008;130(26):8175–7.
    • (2008) J Am Chem Soc , vol.130 , Issue.26 , pp. 8175-8177
    • Wu, G.1
  • 36
    • 84876552648 scopus 로고    scopus 로고
    • Synthesis and degradation of backbone photodegradable polyester dendrimers
    • COI: 1:CAS:528:DC%2BC3sXltVCltbs%3D, PID: 23545015, This article demonstrates a well-defined, fully photodegradable material suited for triggerable biological degradation
    • Nazemi A, Schon TB, Gillies ER. Synthesis and degradation of backbone photodegradable polyester dendrimers. Org Lett. 2013;15(8):1830–3. This article demonstrates a well-defined, fully photodegradable material suited for triggerable biological degradation.
    • (2013) Org Lett , vol.15 , Issue.8 , pp. 1830-1833
    • Nazemi, A.1    Schon, T.B.2    Gillies, E.R.3
  • 37
    • 77952291540 scopus 로고    scopus 로고
    • A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery
    • COI: 1:CAS:528:DC%2BC3cXltFKmsrc%3D, PID: 20347484
    • Epstein-Barash H et al. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials. 2010;31(19):5208–17.
    • (2010) Biomaterials , vol.31 , Issue.19 , pp. 5208-5217
    • Epstein-Barash, H.1
  • 38
    • 0024748170 scopus 로고
    • Ultrasound-enhanced polymer degradation and release of incorporated substances
    • COI: 1:CAS:528:DyaK3cXmt1CgtA%3D%3D, PID: 2813349
    • Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A. 1989;86(20):7663–6.
    • (1989) Proc Natl Acad Sci U S A , vol.86 , Issue.20 , pp. 7663-7666
    • Kost, J.1    Leong, K.2    Langer, R.3
  • 39
    • 84905851550 scopus 로고    scopus 로고
    • Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes
    • COI: 1:CAS:528:DC%2BC2cXhtFWjtb3I, PID: 25003560
    • Fu HL et al. Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes. Biomacromolecules. 2014;15(8):2924–32.
    • (2014) Biomacromolecules , vol.15 , Issue.8 , pp. 2924-2932
    • Fu, H.L.1
  • 40
    • 0037965624 scopus 로고    scopus 로고
    • Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics
    • COI: 1:CAS:528:DC%2BD3sXjs1yitLc%3D, PID: 12686696
    • Lutolf MP et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100(9):5413–8.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.9 , pp. 5413-5418
    • Lutolf, M.P.1
  • 41
    • 19444372418 scopus 로고    scopus 로고
    • Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics
    • PID: 15984055
    • El-Sayed ME, Hoffman AS, Stayton PS. Rational design of composition and activity correlations for pH-responsive and glutathione-reactive polymer therapeutics. J Control Release. 2005;104(2):417–27.
    • (2005) J Control Release , vol.104 , Issue.2 , pp. 417-427
    • El-Sayed, M.E.1    Hoffman, A.S.2    Stayton, P.S.3
  • 42
    • 84951858657 scopus 로고    scopus 로고
    • Hydrogels for therapeutic cardiovascular angiogenesis
    • PID: 26212158
    • Rufaihah AJ, Seliktar D. Hydrogels for therapeutic cardiovascular angiogenesis. Adv Drug Deliv Rev. 2015;96:31–9.
    • (2015) Adv Drug Deliv Rev , vol.96 , pp. 31-39
    • Rufaihah, A.J.1    Seliktar, D.2
  • 43
    • 0034122571 scopus 로고    scopus 로고
    • Growth factor delivery for tissue engineering
    • COI: 1:CAS:528:DC%2BD3cXksVGqtbg%3D, PID: 10888299
    • Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res. 2000;17(5):497–504.
    • (2000) Pharm Res , vol.17 , Issue.5 , pp. 497-504
    • Babensee, J.E.1    McIntire, L.V.2    Mikos, A.G.3
  • 44
    • 80053997654 scopus 로고    scopus 로고
    • Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent
    • COI: 1:CAS:528:DC%2BC3MXht1ylsb3M, PID: 21736941
    • Yang Y et al. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Eur J Pharm Biopharm. 2011;79(3):519–25.
    • (2011) Eur J Pharm Biopharm , vol.79 , Issue.3 , pp. 519-525
    • Yang, Y.1
  • 45
    • 84945900154 scopus 로고    scopus 로고
    • Modulation of vincristine and doxorubicin binding and release from silk films
    • COI: 1:CAS:528:DC%2BC2MXhslGjsbfN, PID: 26500149
    • Coburn JM, Na E, Kaplan DL. Modulation of vincristine and doxorubicin binding and release from silk films. J Control Release. 2015;220(Pt A):229–38.
    • (2015) J Control Release , vol.220 , pp. 229-238
    • Coburn, J.M.1    Na, E.2    Kaplan, D.L.3
  • 46
    • 79956207489 scopus 로고    scopus 로고
    • Silk fibroin biomaterials for controlled release drug delivery
    • COI: 1:CAS:528:DC%2BC3MXmtlWrtb8%3D, PID: 21453189
    • Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011;8(6):797–811.
    • (2011) Expert Opin Drug Deliv , vol.8 , Issue.6 , pp. 797-811
    • Pritchard, E.M.1    Kaplan, D.L.2
  • 47
    • 84937064628 scopus 로고    scopus 로고
    • Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery
    • COI: 1:CAS:528:DC%2BC2MXisl2nsL0%3D, PID: 25689115
    • Coburn JM, Kaplan DL. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug Chem. 2015;26(7):1212–23.
    • (2015) Bioconjug Chem , vol.26 , Issue.7 , pp. 1212-1223
    • Coburn, J.M.1    Kaplan, D.L.2
  • 48
    • 84954233553 scopus 로고    scopus 로고
    • Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration
    • COI: 1:CAS:528:DC%2BC2MXhs1eqsr3J, PID: 26462137
    • Ma C et al. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv Healthc Mater. 2015;4:2699–708.
    • (2015) Adv Healthc Mater , vol.4 , pp. 2699-2708
    • Ma, C.1
  • 49
    • 84939431404 scopus 로고    scopus 로고
    • A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C
    • COI: 1:CAS:528:DC%2BC2MXhsVegurzF, PID: 26277717
    • Zhu J et al. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C. Colloids Surf B: Biointerfaces. 2015;135:416–24.
    • (2015) Colloids Surf B: Biointerfaces , vol.135 , pp. 416-424
    • Zhu, J.1
  • 50
    • 84898547734 scopus 로고    scopus 로고
    • Spray-painted human fibronectin coating as an effective strategy to enhance graft ligamentization of a polyethylene terephthalate artificial ligament
    • COI: 1:CAS:528:DC%2BC2cXivFyjtLk%3D, PID: 24557075
    • Li H et al. Spray-painted human fibronectin coating as an effective strategy to enhance graft ligamentization of a polyethylene terephthalate artificial ligament. Biotechnol Lett. 2014;36(5):1079–88.
    • (2014) Biotechnol Lett , vol.36 , Issue.5 , pp. 1079-1088
    • Li, H.1
  • 51
    • 84906241284 scopus 로고    scopus 로고
    • Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering
    • PID: 25015608
    • Sharifiaghdas F et al. Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering. Urol J. 2014;11(3):1620–8.
    • (2014) Urol J , vol.11 , Issue.3 , pp. 1620-1628
    • Sharifiaghdas, F.1
  • 52
    • 84921260754 scopus 로고    scopus 로고
    • Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration
    • COI: 1:CAS:528:DC%2BC2MXivVSjtQ%3D%3D, PID: 25617133
    • Lee DY et al. Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration. Biomaterials. 2015;44:134–42.
    • (2015) Biomaterials , vol.44 , pp. 134-142
    • Lee, D.Y.1
  • 53
    • 0029775681 scopus 로고    scopus 로고
    • RGD and other recognition sequences for integrins
    • COI: 1:CAS:528:DyaK28XnsFClur0%3D, PID: 8970741
    • Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.
    • (1996) Annu Rev Cell Dev Biol , vol.12 , pp. 697-715
    • Ruoslahti, E.1
  • 54
    • 84921869422 scopus 로고    scopus 로고
    • Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering
    • COI: 1:CAS:528:DC%2BC2cXitFaiu7fF, PID: 25463503, This article demonstrates an example of a hybrid scaffold. An extracellular matrix / fibrin scaffold was generated that explores the effects of exploiting both composition and mechanical properties to control the differentiation of vascular and cardiac components
    • Williams C et al. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95. This article demonstrates an example of a hybrid scaffold. An extracellular matrix / fibrin scaffold was generated that explores the effects of exploiting both composition and mechanical properties to control the differentiation of vascular and cardiac components.
    • (2015) Acta Biomater , vol.14 , pp. 84-95
    • Williams, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.