메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4893-4901

Latent factor guided convolutional neural networks for age-invariant face recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84986330157     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.529     Document Type: Conference Paper
Times cited : (184)

References (37)
  • 1
    • 85009933427 scopus 로고    scopus 로고
    • Fg-net aging database
    • Fg-net aging database. In http://www.fgnet.rsunit.com/, 2010.
    • (2010)
  • 4
    • 84929321715 scopus 로고    scopus 로고
    • Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset
    • B.-C. Chen, C.-S. Chen, and W. Hsu. Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE TMM, 17(6):804-815, 2015.
    • (2015) IEEE TMM , vol.17 , Issue.6 , pp. 804-815
    • Chen, B.-C.1    Chen, C.-S.2    Hsu, W.3
  • 6
    • 36248946626 scopus 로고    scopus 로고
    • Automatic age estimation based on facial aging patterns
    • X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facial aging patterns. IEEE TPAMI, 29(12):2234-2240, 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.12 , pp. 2234-2240
    • Geng, X.1    Zhou, Z.-H.2    Smith-Miles, K.3
  • 7
    • 84898822549 scopus 로고    scopus 로고
    • Hidden factor analysis for age invariant face recognition
    • D. Gong, Z. Li, D. Lin, J. Liu, and X. Tang. Hidden factor analysis for age invariant face recognition. In ICCV, 2013.
    • (2013) ICCV
    • Gong, D.1    Li, Z.2    Lin, D.3    Liu, J.4    Tang, X.5
  • 8
    • 84959198891 scopus 로고    scopus 로고
    • A maximum entropy feature descriptor for age invariant face recognition
    • D. Gong, Z. Li, D. Tao, J. Liu, and X. Li. A maximum entropy feature descriptor for age invariant face recognition. In CVPR, 2015.
    • (2015) CVPR
    • Gong, D.1    Li, Z.2    Tao, D.3    Liu, J.4    Li, X.5
  • 10
    • 84862271600 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI, 1999.
    • (1999) IJCAI
    • Hofmann, T.1    Puzicha, J.2
  • 13
    • 84856098103 scopus 로고    scopus 로고
    • Face recognition across time lapse: On learning feature subspaces
    • B. Klare and A. K. Jain. Face recognition across time lapse: On learning feature subspaces. In IJCB, 2011.
    • (2011) IJCB
    • Klare, B.1    Jain, A.K.2
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 0036537914 scopus 로고    scopus 로고
    • Toward automatic simulation of aging effects on face images
    • A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging effects on face images. IEEE TPAMI, 24(4):442-455, 2002.
    • (2002) IEEE TPAMI , vol.24 , Issue.4 , pp. 442-455
    • Lanitis, A.1    Taylor, C.J.2    Cootes, T.F.3
  • 16
    • 84979821595 scopus 로고    scopus 로고
    • Learning compact feature descriptor and adaptive matching framework for face recognition
    • Z. Li, D. Gong, X. Li, and D. Tao. Learning compact feature descriptor and adaptive matching framework for face recognition. Image Processing, IEEE Transactions on, 24(9):2736-2745, 2015.
    • (2015) Image Processing, IEEE Transactions on , vol.24 , Issue.9 , pp. 2736-2745
    • Li, Z.1    Gong, D.2    Li, X.3    Tao, D.4
  • 17
    • 84963795537 scopus 로고    scopus 로고
    • Aging face recognition: A hierarchical learning model based on local patterns selection
    • Z. Li, D. Gong, X. Li, and D. Tao. Aging face recognition: A hierarchical learning model based on local patterns selection. Image Processing, IEEE Transactions on, 25(5):2146-2154, 2016.
    • (2016) Image Processing, IEEE Transactions on , vol.25 , Issue.5 , pp. 2146-2154
    • Li, Z.1    Gong, D.2    Li, X.3    Tao, D.4
  • 22
    • 84959227942 scopus 로고    scopus 로고
    • How does aging affect facial components?
    • C. Otto, H. Han, and A. Jain. How does aging affect facial components? In ECCV, 2012.
    • (2012) ECCV
    • Otto, C.1    Han, H.2    Jain, A.3
  • 24
    • 77949873278 scopus 로고    scopus 로고
    • Age-invariant face recognition
    • U. Park, Y. Tong, and A. K. Jain. Age-invariant face recognition. IEEE TPAMI, 32(5):947-954, 2010.
    • (2010) IEEE TPAMI , vol.32 , Issue.5 , pp. 947-954
    • Park, U.1    Tong, Y.2    Jain, A.K.3
  • 27
    • 33750826722 scopus 로고    scopus 로고
    • Morph: A longitudinal image database of normal adult age-progression
    • K. Ricanek Jr. and T. Tesafaye. Morph: A longitudinal image database of normal adult age-progression. In FG, 2006.
    • (2006) FG
    • Ricanek, K.1    Tesafaye, T.2
  • 29
    • 84946751287 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 32
    • 84946769681 scopus 로고    scopus 로고
    • Deeply learned face representations are sparse, selective, and robust
    • Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. In CVPR, 2015.
    • (2015) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 33
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 35
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision-ECCV 2014, pages 818-833. Springer, 2014.
    • (2014) Computer Vision-ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.