메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1884-1893

They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE RETRIEVAL; SEMANTICS;

EID: 84986300674     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.208     Document Type: Conference Paper
Times cited : (38)

References (57)
  • 1
    • 84986283421 scopus 로고    scopus 로고
    • Trecvid MED 2013. http://nist.gov/itl/iad/mig/med13.cfm.
    • (2013) Trecvid MED
  • 2
    • 84986312889 scopus 로고    scopus 로고
    • Trecvid MED 2014. http://nist.gov/itl/iad/mig/med14.cfm.
    • (2014) Trecvid MED
  • 3
    • 84986312871 scopus 로고    scopus 로고
    • The YFCC dataset. http://webscope. sandbox.yahoo.com/catalog.php? datatype=i&did=67.
    • The YFCC Dataset
  • 6
    • 84911400185 scopus 로고    scopus 로고
    • Recognition of complex events: Exploiting temporal dynamics between underlying concepts
    • S. Bhattacharya, M. M. Kalayeh, R. Sukthankar, and M. Shah. Recognition of complex events: Exploiting temporal dynamics between underlying concepts. In CVPR, 2014.
    • (2014) CVPR
    • Bhattacharya, S.1    Kalayeh, M.M.2    Sukthankar, R.3    Shah, M.4
  • 7
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recognition. In CVPR, 2010.
    • (2010) CVPR
    • Boureau, Y.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 8
    • 84867850412 scopus 로고    scopus 로고
    • Scene aligned pooling for complex video recognition
    • L. Cao, Y. Mu, A. Natsev, S. Chang, G. Hua, and J. R. Smith. Scene aligned pooling for complex video recognition. In ECCV, pages 688-701, 2012.
    • (2012) ECCV , pp. 688-701
    • Cao, L.1    Mu, Y.2    Natsev, A.3    Chang, S.4    Hua, G.5    Smith, J.R.6
  • 10
    • 84949766814 scopus 로고    scopus 로고
    • Semantic concept discovery for large-scale zero-shot event detection
    • X. Chang, Y. Yang, A. G. Hauptmann, E. P. Xing, and Y. Yu. Semantic concept discovery for large-scale zero-shot event detection. In IJCAI, 2015.
    • (2015) IJCAI
    • Chang, X.1    Yang, Y.2    Hauptmann, A.G.3    Xing, E.P.4    Yu, Y.5
  • 11
    • 85007202925 scopus 로고    scopus 로고
    • Dynamic concept composition for zeroexample event detection
    • X. Chang, Y. Yang, G. Long, C. Zhang, and A. G. Hauptmann. Dynamic concept composition for zeroexample event detection. In AAAI, 2016.
    • (2016) AAAI
    • Chang, X.1    Yang, Y.2    Long, G.3    Zhang, C.4    Hauptmann, A.G.5
  • 12
    • 84969822870 scopus 로고    scopus 로고
    • Complex event detection using semantic saliency and nearlyisotonic SVM
    • X. Chang, Y. Yang, E. P. Xing, and Y. Yu. Complex event detection using semantic saliency and nearlyisotonic SVM. In ICML, 2015.
    • (2015) ICML
    • Chang, X.1    Yang, Y.2    Xing, E.P.3    Yu, Y.4
  • 13
    • 84986312345 scopus 로고    scopus 로고
    • Searching persuasively: Joint event detection and evidence recounting with limited supervision
    • X. Chang, Y. Yu, Y. Yang, and A. G. Hauptmann. Searching persuasively: Joint event detection and evidence recounting with limited supervision. In ACM MM, 2015.
    • (2015) ACM MM
    • Chang, X.1    Yu, Y.2    Yang, Y.3    Hauptmann, A.G.4
  • 14
    • 84899755756 scopus 로고    scopus 로고
    • Event-driven semantic concept discovery by exploiting weakly tagged internet images
    • J. Chen, Y. Cui, G. Ye, D. Liu, and S. Chang. Event-driven semantic concept discovery by exploiting weakly tagged internet images. In ICMR, 2014.
    • (2014) ICMR
    • Chen, J.1    Cui, Y.2    Ye, G.3    Liu, D.4    Chang, S.5
  • 15
    • 84911390560 scopus 로고    scopus 로고
    • Temporal sequence modeling for video event detection
    • Y. Cheng, Q. Fan, S. Pankanti, and A. N. Choudhary. Temporal sequence modeling for video event detection. In CVPR, 2014.
    • (2014) CVPR
    • Cheng, Y.1    Fan, Q.2    Pankanti, S.3    Choudhary, A.N.4
  • 16
    • 84889607930 scopus 로고    scopus 로고
    • Zero-shot video retrieval using content and concepts
    • J. Dalton, J. Allan, and P. Mirajkar. Zero-shot video retrieval using content and concepts. In CIKM, 2013.
    • (2013) CIKM
    • Dalton, J.1    Allan, J.2    Mirajkar, P.3
  • 17
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 28(1):20-28, 1979.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 20
    • 84899708619 scopus 로고    scopus 로고
    • Composite concept discovery for zero-shot video event detection
    • A. Habibian, T. Mensink, and C. G. M. Snoek. Composite concept discovery for zero-shot video event detection. In ICMR, 2014.
    • (2014) ICMR
    • Habibian, A.1    Mensink, T.2    Snoek, C.G.M.3
  • 21
    • 84877635025 scopus 로고    scopus 로고
    • Recommendations for video event recognition using concept vocabularies
    • A. Habibian, K. E. A. van de Sande, and C. G. M. Snoek. Recommendations for video event recognition using concept vocabularies. In ICMR, 2013.
    • (2013) ICMR
    • Habibian, A.1    De Van Sande, A.K.E.2    Snoek, C.G.M.3
  • 22
    • 84986248339 scopus 로고    scopus 로고
    • Estimating the accuracies of multiple classifiers without labeled data
    • A. Jaffe, B. Nadler, and Y. Kluger. Estimating the accuracies of multiple classifiers without labeled data. In AISTATS, 2015.
    • (2015) AISTATS
    • Jaffe, A.1    Nadler, B.2    Kluger, Y.3
  • 23
    • 84937954530 scopus 로고    scopus 로고
    • Zero-shot recognition with unreliable attributes
    • D. Jayaraman and K. Grauman. Zero-shot recognition with unreliable attributes. In NIPS, 2014.
    • (2014) NIPS
    • Jayaraman, D.1    Grauman, K.2
  • 25
    • 84899746163 scopus 로고    scopus 로고
    • Zero-example event search using multimodal pseudo relevance feedback
    • L. Jiang, T. Mitamura, S. Yu, and A. G. Hauptmann. Zero-example event search using multimodal pseudo relevance feedback. In ICMR, page 297, 2014.
    • (2014) ICMR , pp. 297
    • Jiang, L.1    Mitamura, T.2    Yu, S.3    Hauptmann, A.G.4
  • 26
    • 84986185450 scopus 로고    scopus 로고
    • High-level event recognition in unconstrained videos
    • Y. Jiang, S. Bhattacharya, S. Chang, and M. Shah. High-level event recognition in unconstrained videos. IJMIR, 2(2):73-101, 2013.
    • (2013) IJMIR , vol.2 , Issue.2 , pp. 73-101
    • Jiang, Y.1    Bhattacharya, S.2    Chang, S.3    Shah, M.4
  • 27
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • Y. Jiang, G. Ye, S. Chang, D. P. W. Ellis, and A. C. Loui. Consumer video understanding: a benchmark database and an evaluation of human and machine performance. In ICMR, 2011.
    • (2011) ICMR
    • Jiang, Y.1    Ye, G.2    Chang, S.3    Ellis, D.P.W.4    Loui, A.C.5
  • 29
    • 84911413388 scopus 로고    scopus 로고
    • Video event detection by inferring temporal instance labels
    • K. Lai, F. X. Yu, M. Chen, and S. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014.
    • (2014) CVPR
    • Lai, K.1    Yu, F.X.2    Chen, M.3    Chang, S.4
  • 30
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 31
    • 84898811014 scopus 로고    scopus 로고
    • Dynamic pooling for complex event recognition
    • W. Li, Q. Yu, A. Divakaran, and N. Vasconcelos. Dynamic pooling for complex event recognition. In ICCV, 2013.
    • (2013) ICCV
    • Li, W.1    Yu, Q.2    Divakaran, A.3    Vasconcelos, N.4
  • 32
    • 84887384267 scopus 로고    scopus 로고
    • Recognizing activities via bag of words for attribute dynamics
    • W. Li, Q. Yu, H. S. Sawhney, and N. Vasconcelos. Recognizing activities via bag of words for attribute dynamics. In CVPR, 2013.
    • (2013) CVPR
    • Li, W.1    Yu, Q.2    Sawhney, H.S.3    Vasconcelos, N.4
  • 33
    • 84887358015 scopus 로고    scopus 로고
    • Local expert forest of score fusion for video event classification
    • J. Liu, S. McCloskey, and Y. Liu. Local expert forest of score fusion for video event classification. In ECCV, 2012.
    • (2012) ECCV
    • Liu, J.1    McCloskey, S.2    Liu, Y.3
  • 34
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) Ternational Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 35
    • 84877610183 scopus 로고    scopus 로고
    • Searching informative concept banks for video event detection
    • M. Mazloom, E. Gavves, K. E. A. van de Sande, and C. Snoek. Searching informative concept banks for video event detection. In ICMR, 2013.
    • (2013) ICMR
    • Mazloom, M.1    Gavves, E.2    De Van Sande, A.K.E.3    Snoek, C.4
  • 36
    • 84911410734 scopus 로고    scopus 로고
    • COSTA: Co-occurrence statistics for zero-shot classification
    • T. Mensink, E. Gavves, and C. G. M. Snoek. COSTA: co-occurrence statistics for zero-shot classification. In CVPR, 2014.
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.M.3
  • 37
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 41
    • 85009909479 scopus 로고    scopus 로고
    • Improving the Fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 42
    • 84923272739 scopus 로고    scopus 로고
    • Estimating accuracy from unlabeled data
    • E. A. Platanios, A. Blum, and T. Mitchell. Estimating accuracy from unlabeled data. In UAI, 2014.
    • (2014) UAI
    • Platanios, E.A.1    Blum, A.2    Mitchell, T.3
  • 43
    • 84887334183 scopus 로고    scopus 로고
    • Multi-attribute queries: To merge or not to merge?
    • M. Rastegari, A. Diba, D. Parikh, and A. Farhadi. Multi-attribute queries: To merge or not to merge? In CVPR, 2013.
    • (2013) CVPR
    • Rastegari, M.1    Diba, A.2    Parikh, D.3    Farhadi, A.4
  • 47
    • 84911429593 scopus 로고    scopus 로고
    • Discover: Discovering important segments for classification of video events and recounting
    • C. Sun and R. Nevatia. DISCOVER: discovering important segments for classification of video events and recounting. In CVPR, 2014.
    • (2014) CVPR
    • Sun, C.1    Nevatia, R.2
  • 48
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • K. D. Tang, F. Li, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012.
    • (2012) CVPR
    • Tang, K.D.1    Li, F.2    Koller, D.3
  • 49
    • 84898827877 scopus 로고    scopus 로고
    • Combining the right features for complex event recognition
    • K. D. Tang, B. Yao, F. Li, and D. Koller. Combining the right features for complex event recognition. In ICCV, 2013.
    • (2013) ICCV
    • Tang, K.D.1    Yao, B.2    Li, F.3    Koller, D.4
  • 50
    • 84898817119 scopus 로고    scopus 로고
    • Compositional models for video event detection: A multiple kernel learning latent variable approach
    • A. Vahdat, K. J. Cannons, G. Mori, S. Oh, and I. Kim. Compositional models for video event detection: A multiple kernel learning latent variable approach. In ICCV, 2013.
    • (2013) ICCV
    • Vahdat, A.1    Cannons, K.J.2    Mori, G.3    Oh, S.4    Kim, I.5
  • 52
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 53
    • 84911434661 scopus 로고    scopus 로고
    • Zero-shot event detection using multimodal fusion of weakly supervised concepts
    • S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zero-shot event detection using multimodal fusion of weakly supervised concepts. In CVPR, 2014.
    • (2014) CVPR
    • Wu, S.1    Bondugula, S.2    Luisier, F.3    Zhuang, X.4    Natarajan, P.5
  • 54
    • 84959226659 scopus 로고    scopus 로고
    • A discriminative cnn video representation for event detection
    • Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video representation for event detection. In CVPR, 2015.
    • (2015) CVPR
    • Xu, Z.1    Yang, Y.2    Hauptmann, A.G.3
  • 55
    • 84866712367 scopus 로고    scopus 로고
    • Robust late fusion with rank minimization
    • G. Ye, D. Liu, I. Jhuo, and S. Chang. Robust late fusion with rank minimization. In CVPR, 2012.
    • (2012) CVPR
    • Ye, G.1    Liu, D.2    Jhuo, I.3    Chang, S.4
  • 56
    • 85009908792 scopus 로고    scopus 로고
    • Instructional videos for unsupervised harvesting and learning of action examples
    • S. Yu, L. Jiang, and A. G. Hauptmann. Instructional videos for unsupervised harvesting and learning of action examples. In ACM MM, 2015.
    • (2015) ACM MM
    • Yu, S.1    Jiang, L.2    Hauptmann, A.G.3
  • 57
    • 84877780790 scopus 로고    scopus 로고
    • Accelerated training for matrix-norm regularization: A boosting approach
    • X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting approach. In NIPS, 2012.
    • (2012) NIPS
    • Zhang, X.1    Yu, Y.2    Schuurmans, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.