메뉴 건너뛰기




Volumn , Issue , 2014, Pages 682-691

Estimating accuracy from unlabeled data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; VIRTUAL REALITY;

EID: 84923272739     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (54)

References (13)
  • 2
  • 8
    • 77951970416 scopus 로고    scopus 로고
    • Unsupervised supervised learning i: Estimating classification and regression errors without labels
    • April
    • Pinar Donmez, Guy Lebanon, and Krishnakumar Balasubramanian. Unsupervised Supervised Learning I: Estimating Classification and Regression Errors without Labels. Journal of Machine Learning Research, 11:1323-1351, April 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1323-1351
    • Donmez, P.1    Lebanon, G.2    Balasubramanian, K.3
  • 9
    • 34547627576 scopus 로고    scopus 로고
    • Co-validation: Using model disagreement on unlabeled data to validate classification algorithms
    • Omid Madani, David M Pennock, and Gary W Flake. Co-Validation: Using Model Disagreement on Unlabeled Data to Validate Classification Algorithms. In Neural Information Processing Systems, pages 1-8, 2004.
    • (2004) Neural Information Processing Systems , pp. 1-8
    • Madani, O.1    Pennock, D.M.2    Flake, G.W.3
  • 12
    • 84923288905 scopus 로고    scopus 로고
    • Metric-based approaches for semi-supervised regression and classification
    • Dale Schuurmans, Finnegan Southey, Dana Wilkinson, and Yuhong Guo. Metric-Based Approaches for Semi-Supervised Regression and Classification. In Semi-Supervised Learning, pages 1-31. 2006.
    • (2006) Semi-Supervised Learning , pp. 1-31
    • Schuurmans, D.1    Southey, F.2    Wilkinson, D.3    Guo, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.