-
1
-
-
3242681758
-
Support vector tracking
-
S. Avidan. Support vector tracking. PAMI, 26(8):1064-1072, 2004.
-
(2004)
PAMI
, vol.26
, Issue.8
, pp. 1064-1072
-
-
Avidan, S.1
-
2
-
-
33947229323
-
Ensemble tracking
-
S. Avidan. Ensemble tracking. PAMI, 29(2):61-271, 2007.
-
(2007)
PAMI
, vol.29
, Issue.2
, pp. 61-271
-
-
Avidan, S.1
-
3
-
-
79959527478
-
Robust object tracking with online multiple instance learning
-
B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. PAMI, 33(8):1619-1632, 2011.
-
(2011)
PAMI
, vol.33
, Issue.8
, pp. 1619-1632
-
-
Babenko, B.1
Yang, M.-H.2
Belongie, S.3
-
5
-
-
72149129130
-
A review of visual tracking
-
York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07
-
K. Cannons. A review of visual tracking. Dept. Comput. Sci. Eng., York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07, 2008.
-
(2008)
Dept. Comput. Sci. Eng
-
-
Cannons, K.1
-
6
-
-
0042941939
-
Mean-shift blob tracking through scale space
-
R. T. Collins. Mean-shift blob tracking through scale space. In CVPR, 2003.
-
(2003)
CVPR
-
-
Collins, R.T.1
-
7
-
-
84956699399
-
Transfer learning based visual tracking with Gaussian processes regression
-
J. Gao, H. Ling,W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, 2014.
-
(2014)
ECCV
-
-
Gao, J.1
Ling, H.2
Hu, W.3
Xing, J.4
-
8
-
-
84856659290
-
Struck: Structured output tracking with kernels
-
S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hare, S.1
Saffari, A.2
Torr, P.H.3
-
9
-
-
84875994858
-
Exploiting the circulant structure of tracking-by-detection with kernels
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
-
(2012)
ECCV
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
11
-
-
84861312439
-
Tracking-learningdetection
-
Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection. PAMI, 34(7):1409-1422, 2012.
-
(2012)
PAMI
, vol.34
, Issue.7
, pp. 1409-1422
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
12
-
-
84883469388
-
Coloring action recognition in still images
-
F. Khan, R. Anwer, J. Weijer, A. Bagdanov, A. Lopez, and M. Felsberg. Coloring action recognition in still images. IJCV, 105(3):205-221, 2013.
-
(2013)
IJCV
, vol.105
, Issue.3
, pp. 205-221
-
-
Khan, F.1
Anwer, R.2
Weijer, J.3
Bagdanov, A.4
Lopez, A.5
Felsberg, M.6
-
13
-
-
84956693941
-
A scale adaptive kernel correlation filter tracker with feature integration
-
Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV Worksohps, 2014.
-
(2014)
ECCV Worksohps
-
-
Li, Y.1
Zhu, J.2
-
14
-
-
84973869904
-
Hierarchical convolutional features for visual tracking
-
C. Ma, J. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking. In ICCV, 2015.
-
(2015)
ICCV
-
-
Ma, C.1
Huang, J.2
Yang, X.3
Yang, M.-H.4
-
15
-
-
77953184603
-
Max-margin additive classifiers for detection
-
S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In ICCV, 2009.
-
(2009)
ICCV
-
-
Maji, S.1
Berg, A.C.2
-
16
-
-
85097586621
-
Robust visual tracking using l1 minimization
-
X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009.
-
(2009)
ICCV
-
-
Mei, X.1
Ling, H.2
-
17
-
-
80053126093
-
Robust visual tracking and vehicle classification via sparse representation
-
X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. PAMI, 33(11):2259-2272, 2011.
-
(2011)
PAMI
, vol.33
, Issue.11
, pp. 2259-2272
-
-
Mei, X.1
Ling, H.2
-
18
-
-
84898798671
-
Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms
-
Y. Pang and H. Ling. Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, 2013.
-
(2013)
ICCV
-
-
Pang, Y.1
Ling, H.2
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
J. Platt et al. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methodssupport vector learning, 3, 1999.
-
(1999)
Advances in Kernel Methodssupport Vector Learning
, vol.3
-
-
Platt, J.1
-
21
-
-
72449164388
-
(Online) subgradient methods for structured prediction
-
N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. (online) subgradient methods for structured prediction. In ICAIS, 2007.
-
(2007)
ICAIS
-
-
Ratliff, N.D.1
Bagnell, J.A.2
Zinkevich, M.A.3
-
22
-
-
39749173057
-
Incremental learning for robust visual tracking
-
D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3):125-141, 2008.
-
(2008)
IJCV
, vol.77
, Issue.1-3
, pp. 125-141
-
-
Ross, D.A.1
Lim, J.2
Lin, R.3
Yang, M.4
-
23
-
-
77953178544
-
On-line random forests
-
A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In ICCV, 2009.
-
(2009)
ICCV
-
-
Saffari, A.1
Leistner, C.2
Santner, J.3
Godec, M.4
Bischof, H.5
-
25
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient solver for svm. Mathematical programming, 127(1):3-30, 2011.
-
(2011)
Mathematical Programming
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
26
-
-
84903121415
-
Visual tracking: An experimental survey
-
A.W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual tracking: An experimental survey. PAMI, 36(7):1442-1468, 2014.
-
(2014)
PAMI
, vol.36
, Issue.7
, pp. 1442-1468
-
-
Smeulders, A.W.M.1
Chu, D.M.2
Cucchiara, R.3
Calderara, S.4
Dehghan, A.5
Shah, M.6
-
27
-
-
84856194352
-
Efficient additive kernels via explicit feature maps
-
A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. PAMI, 34(3):480-492, 2012.
-
(2012)
PAMI
, vol.34
, Issue.3
, pp. 480-492
-
-
Vedaldi, A.1
Zisserman, A.2
-
28
-
-
84898957022
-
Learning a deep compact image representation for visual tracking
-
N. Wang and D. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, 2013.
-
(2013)
NIPS
-
-
Wang, N.1
Yeung, D.2
-
29
-
-
77954636582
-
Online training on a budget of support vector machines using twin prototypes
-
Z. Wang and S.Vucetic. online training on a budget of support vector machines using twin prototypes. In SADM, 2010.
-
(2010)
SADM
-
-
Wang, Z.1
Vucetic, S.2
-
30
-
-
84885674451
-
Online spatio-temporal structural context learning for visual tracking
-
L. Wen, Z. Cai, Z. Lei, and S. Li. Online spatio-temporal structural context learning for visual tracking. In ECCV, 2012.
-
(2012)
ECCV
-
-
Wen, L.1
Cai, Z.2
Lei, Z.3
Li, S.4
-
31
-
-
84887348427
-
Online object tracking: A benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
-
(2013)
CVPR
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
32
-
-
84939235624
-
Object tracking benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. PAMI, 37(9):1834-1848, 2015.
-
(2015)
PAMI
, vol.37
, Issue.9
, pp. 1834-1848
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
33
-
-
84887383332
-
Partbased visual tracking with online latent structural learning
-
R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. Hengel. Partbased visual tracking with online latent structural learning. In CVPR, 2013.
-
(2013)
CVPR
-
-
Yao, R.1
Shi, Q.2
Shen, C.3
Zhang, Y.4
Hengel, A.5
-
35
-
-
0001638495
-
Non-parametric local transforms for computing visual correspondence
-
R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspondence. In ECCV, 1994.
-
(1994)
ECCV
-
-
Zabih, R.1
Woodfill, J.2
-
36
-
-
85009901660
-
Meem: Robust tracking via multiple experts using entropy minimization
-
J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, J.1
Ma, S.2
Sclaroff, S.3
-
37
-
-
84925383307
-
Fast tracking via dense spatio-temporal context learning
-
K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast tracking via dense spatio-temporal context learning. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, K.1
Zhang, L.2
Liu, Q.3
Zhang, D.4
Yang, M.-H.5
|