메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4266-4274

Object Tracking via Dual Linear Structured SVM and Explicit Feature Map

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; TRACKING (POSITION);

EID: 84986290457     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.462     Document Type: Conference Paper
Times cited : (279)

References (39)
  • 1
    • 3242681758 scopus 로고    scopus 로고
    • Support vector tracking
    • S. Avidan. Support vector tracking. PAMI, 26(8):1064-1072, 2004.
    • (2004) PAMI , vol.26 , Issue.8 , pp. 1064-1072
    • Avidan, S.1
  • 2
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. PAMI, 29(2):61-271, 2007.
    • (2007) PAMI , vol.29 , Issue.2 , pp. 61-271
    • Avidan, S.1
  • 3
    • 79959527478 scopus 로고    scopus 로고
    • Robust object tracking with online multiple instance learning
    • B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. PAMI, 33(8):1619-1632, 2011.
    • (2011) PAMI , vol.33 , Issue.8 , pp. 1619-1632
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 4
    • 56449087452 scopus 로고    scopus 로고
    • Solving multiclass support vector machines with larank
    • A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector machines with larank. In ICML, 2007.
    • (2007) ICML
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3    Weston, J.4
  • 5
    • 72149129130 scopus 로고    scopus 로고
    • A review of visual tracking
    • York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07
    • K. Cannons. A review of visual tracking. Dept. Comput. Sci. Eng., York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07, 2008.
    • (2008) Dept. Comput. Sci. Eng
    • Cannons, K.1
  • 6
    • 0042941939 scopus 로고    scopus 로고
    • Mean-shift blob tracking through scale space
    • R. T. Collins. Mean-shift blob tracking through scale space. In CVPR, 2003.
    • (2003) CVPR
    • Collins, R.T.1
  • 7
    • 84956699399 scopus 로고    scopus 로고
    • Transfer learning based visual tracking with Gaussian processes regression
    • J. Gao, H. Ling,W. Hu, and J. Xing. Transfer learning based visual tracking with Gaussian processes regression. In ECCV, 2014.
    • (2014) ECCV
    • Gao, J.1    Ling, H.2    Hu, W.3    Xing, J.4
  • 8
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.3
  • 9
    • 84875994858 scopus 로고    scopus 로고
    • Exploiting the circulant structure of tracking-by-detection with kernels
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
    • (2012) ECCV
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 11
    • 84861312439 scopus 로고    scopus 로고
    • Tracking-learningdetection
    • Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection. PAMI, 34(7):1409-1422, 2012.
    • (2012) PAMI , vol.34 , Issue.7 , pp. 1409-1422
    • Kalal, Z.1    Mikolajczyk, K.2    Matas, J.3
  • 13
    • 84956693941 scopus 로고    scopus 로고
    • A scale adaptive kernel correlation filter tracker with feature integration
    • Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV Worksohps, 2014.
    • (2014) ECCV Worksohps
    • Li, Y.1    Zhu, J.2
  • 14
    • 84973869904 scopus 로고    scopus 로고
    • Hierarchical convolutional features for visual tracking
    • C. Ma, J. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking. In ICCV, 2015.
    • (2015) ICCV
    • Ma, C.1    Huang, J.2    Yang, X.3    Yang, M.-H.4
  • 15
    • 77953184603 scopus 로고    scopus 로고
    • Max-margin additive classifiers for detection
    • S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In ICCV, 2009.
    • (2009) ICCV
    • Maji, S.1    Berg, A.C.2
  • 16
    • 85097586621 scopus 로고    scopus 로고
    • Robust visual tracking using l1 minimization
    • X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009.
    • (2009) ICCV
    • Mei, X.1    Ling, H.2
  • 17
    • 80053126093 scopus 로고    scopus 로고
    • Robust visual tracking and vehicle classification via sparse representation
    • X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. PAMI, 33(11):2259-2272, 2011.
    • (2011) PAMI , vol.33 , Issue.11 , pp. 2259-2272
    • Mei, X.1    Ling, H.2
  • 18
    • 84898798671 scopus 로고    scopus 로고
    • Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms
    • Y. Pang and H. Ling. Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, 2013.
    • (2013) ICCV
    • Pang, Y.1    Ling, H.2
  • 19
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Platt et al. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methodssupport vector learning, 3, 1999.
    • (1999) Advances in Kernel Methodssupport Vector Learning , vol.3
    • Platt, J.1
  • 21
    • 72449164388 scopus 로고    scopus 로고
    • (Online) subgradient methods for structured prediction
    • N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. (online) subgradient methods for structured prediction. In ICAIS, 2007.
    • (2007) ICAIS
    • Ratliff, N.D.1    Bagnell, J.A.2    Zinkevich, M.A.3
  • 22
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3):125-141, 2008.
    • (2008) IJCV , vol.77 , Issue.1-3 , pp. 125-141
    • Ross, D.A.1    Lim, J.2    Lin, R.3    Yang, M.4
  • 27
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. PAMI, 34(3):480-492, 2012.
    • (2012) PAMI , vol.34 , Issue.3 , pp. 480-492
    • Vedaldi, A.1    Zisserman, A.2
  • 28
    • 84898957022 scopus 로고    scopus 로고
    • Learning a deep compact image representation for visual tracking
    • N. Wang and D. Yeung. Learning a deep compact image representation for visual tracking. In NIPS, 2013.
    • (2013) NIPS
    • Wang, N.1    Yeung, D.2
  • 29
    • 77954636582 scopus 로고    scopus 로고
    • Online training on a budget of support vector machines using twin prototypes
    • Z. Wang and S.Vucetic. online training on a budget of support vector machines using twin prototypes. In SADM, 2010.
    • (2010) SADM
    • Wang, Z.1    Vucetic, S.2
  • 30
    • 84885674451 scopus 로고    scopus 로고
    • Online spatio-temporal structural context learning for visual tracking
    • L. Wen, Z. Cai, Z. Lei, and S. Li. Online spatio-temporal structural context learning for visual tracking. In ECCV, 2012.
    • (2012) ECCV
    • Wen, L.1    Cai, Z.2    Lei, Z.3    Li, S.4
  • 31
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 32
    • 84939235624 scopus 로고    scopus 로고
    • Object tracking benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. PAMI, 37(9):1834-1848, 2015.
    • (2015) PAMI , vol.37 , Issue.9 , pp. 1834-1848
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 33
    • 84887383332 scopus 로고    scopus 로고
    • Partbased visual tracking with online latent structural learning
    • R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. Hengel. Partbased visual tracking with online latent structural learning. In CVPR, 2013.
    • (2013) CVPR
    • Yao, R.1    Shi, Q.2    Shen, C.3    Zhang, Y.4    Hengel, A.5
  • 35
    • 0001638495 scopus 로고
    • Non-parametric local transforms for computing visual correspondence
    • R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspondence. In ECCV, 1994.
    • (1994) ECCV
    • Zabih, R.1    Woodfill, J.2
  • 36
    • 85009901660 scopus 로고    scopus 로고
    • Meem: Robust tracking via multiple experts using entropy minimization
    • J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 37
    • 84925383307 scopus 로고    scopus 로고
    • Fast tracking via dense spatio-temporal context learning
    • K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast tracking via dense spatio-temporal context learning. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, K.1    Zhang, L.2    Liu, Q.3    Zhang, D.4    Yang, M.-H.5
  • 38
    • 84875267892 scopus 로고    scopus 로고
    • Real-time compressive tracking
    • K. Zhang, L. Zhang, and M.-H. Yang. Real-time compressive tracking. In ECCV, 2012.
    • (2012) ECCV
    • Zhang, K.1    Zhang, L.2    Yang, M.-H.3
  • 39
    • 84892373273 scopus 로고    scopus 로고
    • Accelerated training of max-margin markov networks with kernels
    • X. Zhang, A. Saha, and S. V. N. Vishwanathan. Accelerated training of max-margin markov networks with kernels. Theoretical Computer Science, 519:88-102, 2014.
    • (2014) Theoretical Computer Science , vol.519 , pp. 88-102
    • Zhang, X.1    Saha, A.2    Vishwanathan, S.V.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.