메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4883-4892

Learnt quasi-transitive similarity for retrieval from large collections of faces

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; QUERY PROCESSING;

EID: 84986286603     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.528     Document Type: Conference Paper
Times cited : (8)

References (48)
  • 2
    • 84857995555 scopus 로고    scopus 로고
    • Colour invariants under a non-linear photometric camera model and their application to face recognition from video
    • O. Arandjelovíc. Colour invariants under a non-linear photometric camera model and their application to face recognition from video. Pattern Recognition, 45(7):2499-2509, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.7 , pp. 2499-2509
    • Arandjelovíc, O.1
  • 3
    • 80052766896 scopus 로고    scopus 로고
    • Computationally efficient application of the generic shape-illumination invariant to face recognition from video
    • O. Arandjelovíc. Computationally efficient application of the generic shape-illumination invariant to face recognition from video. Pattern Recognition, 45(1):92-103, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 92-103
    • Arandjelovíc, O.1
  • 4
    • 84898434315 scopus 로고    scopus 로고
    • Gradient edge map features for frontal face recognition under extreme illumination changes
    • O. Arandjelovíc. Gradient edge map features for frontal face recognition under extreme illumination changes. In Proc. British Machine Vision Conference, 2012. DOI: 10.5244/C.26.12.
    • (2012) Proc. British Machine Vision Conference
    • Arandjelovíc, O.1
  • 6
    • 84894629266 scopus 로고    scopus 로고
    • Discriminative extended canonical correlation analysis for pattern set matching
    • O. Arandjelovíc. Discriminative extended canonical correlation analysis for pattern set matching. Machine Learning, 94(3):353-370, 2014.
    • (2014) Machine Learning , vol.94 , Issue.3 , pp. 353-370
    • Arandjelovíc, O.1
  • 7
    • 84921821397 scopus 로고    scopus 로고
    • A framework for improving the performance of verification algorithms with a low false positive rate requirement and limited training data
    • O. Arandjelovíc. A framework for improving the performance of verification algorithms with a low false positive rate requirement and limited training data. In Proc. IEEE/IAPR International Joint Conference on Biometrics, 2014. DOI: 10.1109/BTAS.2014.6996275.
    • (2014) Proc. IEEE/IAPR International Joint Conference on Biometrics
    • Arandjelovíc, O.1
  • 8
    • 84899491102 scopus 로고    scopus 로고
    • Hallucinating optimal high-dimensional subspaces
    • O. Arandjelovíc. Hallucinating optimal high-dimensional subspaces. Pattern Recognition, 47(8):2662-2672, 2014.
    • (2014) Pattern Recognition , vol.47 , Issue.8 , pp. 2662-2672
    • Arandjelovíc, O.1
  • 11
    • 84866022782 scopus 로고    scopus 로고
    • Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant
    • O. Arandjelovíc and R. Cipolla. Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant. Pattern Recognition, 46(1):9-23, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 9-23
    • Arandjelovíc, O.1    Cipolla, R.2
  • 12
    • 75749121359 scopus 로고    scopus 로고
    • Thermal and reflectance based personal identification methodology in challenging variable illuminations
    • O. Arandjelovíc, R. I. Hammoud, and R. Cipolla. Thermal and reflectance based personal identification methodology in challenging variable illuminations. Pattern Recognition, 43(5):1801-1813, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.5 , pp. 1801-1813
    • Arandjelovíc, O.1    Hammoud, R.I.2    Cipolla, R.3
  • 15
    • 33947418895 scopus 로고    scopus 로고
    • Face recognition using 2-D, 3-D, and infrared: Is multimodal better than multisample?
    • K. Bowyer, K. Chang, P. Flynn, and X. Chen. Face recognition using 2-D, 3-D, and infrared: is multimodal better than multisample? In Proc. IEEE, 94(11):2000-2012, 2006.
    • (2006) Proc. IEEE , vol.94 , Issue.11 , pp. 2000-2012
    • Bowyer, K.1    Chang, K.2    Flynn, P.3    Chen, X.4
  • 17
    • 77149146199 scopus 로고    scopus 로고
    • Face recognition by computers and humans
    • R. Chellappa, P. Sinha, and P. J. Phillips. Face recognition by computers and humans. Computer, 43(2):46-55, 2010.
    • (2010) Computer , vol.43 , Issue.2 , pp. 46-55
    • Chellappa, R.1    Sinha, P.2    Phillips, P.J.3
  • 20
    • 62949172236 scopus 로고    scopus 로고
    • Taking the bite out of automatic naming of characters in TV video
    • M. Everingham, J. Sivic, and A. Zisserman. Taking the bite out of automatic naming of characters in TV video. Image and Vision Computing, 27(5):545-559, 2009.
    • (2009) Image and Vision Computing , vol.27 , Issue.5 , pp. 545-559
    • Everingham, M.1    Sivic, J.2    Zisserman, A.3
  • 22
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, pages 861-874, 2006.
    • (2006) Pattern Recognition Letters , pp. 861-874
    • Fawcett, T.1
  • 24
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. In Proc. IEEE International Conference on Computer Vision, 2:1458-1465, 2005.
    • (2005) Proc. IEEE International Conference on Computer Vision , vol.2 , pp. 1458-1465
    • Grauman, K.1    Darrell, T.2
  • 25
    • 67649392330 scopus 로고    scopus 로고
    • Combining appearance and motion for face and gender recognition from videos
    • A. Hadid and M. Pietikäinen. Combining appearance and motion for face and gender recognition from videos. Pattern Recognition, 42(11):2818-2827, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2818-2827
    • Hadid, A.1    Pietikäinen, M.2
  • 26
    • 0002039837 scopus 로고
    • A note on the maximization of R2
    • Y. Haitovsky. A note on the maximization of R2. The American Statistician, 23(1):20-21, 1969.
    • (1969) The American Statistician , vol.23 , Issue.1 , pp. 20-21
    • Haitovsky, Y.1
  • 27
    • 54549085366 scopus 로고    scopus 로고
    • Description of interest regions with local binary patterns
    • M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of interest regions with local binary patterns. Pattern Recognition, 42(3):425-436, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 425-436
    • Heikkilä, M.1    Pietikäinen, M.2    Schmid, C.3
  • 28
    • 84930646190 scopus 로고    scopus 로고
    • Face recognition with image sets using locally Grassmannian discriminant analysis
    • H. Hu. Face recognition with image sets using locally Grassmannian discriminant analysis. IEEE Transactions on Circuits and Systems for Video Technology, 24(9):1461-1474, 2014.
    • (2014) IEEE Transactions on Circuits and Systems for Video Technology , vol.24 , Issue.9 , pp. 1461-1474
    • Hu, H.1
  • 31
    • 0942298960 scopus 로고    scopus 로고
    • Face-space-R: Towards a unified account of face recognition
    • M. B. Lewis. Face-space-R: towards a unified account of face recognition. Visual Cognition, 11(1):29-69, 2004.
    • (2004) Visual Cognition , vol.11 , Issue.1 , pp. 29-69
    • Lewis, M.B.1
  • 33
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A, 209:415-446, 1909.
    • (1909) Philosophical Transactions of the Royal Society A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 35
  • 42
    • 33750415060 scopus 로고    scopus 로고
    • Robust hausdorff distance measure for face recognition
    • E. P. Vivek and N. Sudha. Robust hausdorff distance measure for face recognition. Pattern Recognition, 40(2):431-442, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.2 , pp. 431-442
    • Vivek, E.P.1    Sudha, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.