-
1
-
-
84867871564
-
Object detection using stronglysupervised deformable part models
-
H. Azizpour and I. Laptev. Object detection using stronglysupervised deformable part models. In ECCV, pages 836-849, 2012.
-
(2012)
ECCV
, pp. 836-849
-
-
Azizpour, H.1
Laptev, I.2
-
3
-
-
84911443425
-
Scalable object detection using deep neural networks
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, pages 2147-2154, 2014.
-
(2014)
CVPR
, pp. 2147-2154
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
4
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, pages 1-8, 2008.
-
(2008)
CVPR
, pp. 1-8
-
-
Felzenszwalb, P.1
McAllester, D.2
Ramanan, D.3
-
5
-
-
77955999401
-
Cascade object detection with deformable part models
-
P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object detection with deformable part models. In CVPR, pages 2241-2248, 2010.
-
(2010)
CVPR
, pp. 2241-2248
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
-
6
-
-
84964588182
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. In ICCV, pages 1440-1448, 2015.
-
(2015)
ICCV
, pp. 1440-1448
-
-
Girshick, R.1
-
7
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
84961595279
-
Regionbased convolutional networks for accurate object detection and segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Regionbased convolutional networks for accurate object detection and segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 38(1):142-158, 2016.
-
(2016)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.38
, Issue.1
, pp. 142-158
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
9
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361, 2014.
-
(2014)
ECCV
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
84867841321
-
Diagnosing error in object detectors
-
D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In ECCV, pages 340-353, 2012.
-
(2012)
ECCV
, pp. 340-353
-
-
Hoiem, D.1
Chodpathumwan, Y.2
Dai, Q.3
-
12
-
-
51949099868
-
Beyond sliding windows: Object localization by efficient subwindow search
-
C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows: Object localization by efficient subwindow search. In CVPR, pages 1-8, 2008.
-
(2008)
CVPR
, pp. 1-8
-
-
Lampert, C.H.1
Blaschko, M.B.2
Hofmann, T.3
-
14
-
-
84986325322
-
R-cnn minus R
-
Abs 1506 06981
-
K. Lenc and A. Vedaldi. R-CNN minus R. CoRR, abs/1506.06981, 2015.
-
(2015)
CoRR
-
-
Lenc, K.1
Vedaldi, A.2
-
15
-
-
70450186102
-
Object detection using a max-margin hough transform
-
S. Maji and J. Malik. Object detection using a max-margin hough transform. In CVPR, pages 1038-1045, 2009.
-
(2009)
CVPR
, pp. 1038-1045
-
-
Maji, S.1
Malik, J.2
-
16
-
-
84961917629
-
-
arXiv preprint arXiv 1506 02640
-
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015.
-
(2015)
You only look once: Unified, real-time object detection
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
17
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91-99, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
21
-
-
84881160857
-
Selective search for object recognition
-
J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154-171, 2013.
-
(2013)
International Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.1
Van De Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
22
-
-
77953196456
-
Multiple kernels for object detection
-
A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, pages 606-613, 2009.
-
(2009)
ICCV
, pp. 606-613
-
-
Vedaldi, A.1
Gulshan, V.2
Varma, M.3
Zisserman, A.4
-
23
-
-
84973889564
-
Attentionnet: Aggregating weak directions for accurate object detection
-
D. Yoo, S. Park, J.-Y. Lee, A. S. Paek, and I. So Kweon. Attentionnet: Aggregating weak directions for accurate object detection. In ICCV, pages 2659-2667, 2015.
-
(2015)
ICCV
, pp. 2659-2667
-
-
Yoo, D.1
Park, S.2
Lee, J.-Y.3
Paek, A.S.4
So Kweon, I.5
-
24
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, pages 391-405, 2014.
-
(2014)
ECCV
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
|