메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1981-1990

A Hierarchical Pose-Based Approach to Complex Action Understanding Using Dictionaries of Actionlets and Motion Poselets

Author keywords

[No Author keywords available]

Indexed keywords

ATOMS; BENCHMARKING; COMPUTER VISION; GESTURE RECOGNITION; HIERARCHICAL SYSTEMS; IMAGE RECOGNITION; MOTION ESTIMATION;

EID: 84986253374     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.218     Document Type: Conference Paper
Times cited : (46)

References (41)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis
    • Apr.
    • J. K. Aggarwal and M. S. Ryoo. Human activity analysis. ACM Computing Surveys, 43(3):16:1-16:43, Apr. 2011.
    • (2011) ACM Computing Surveys , vol.43 , Issue.3 , pp. 1601-1643
    • Aggarwal, J.K.1    Ryoo, M.S.2
  • 2
    • 78149356001 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, pages 168-181, 2010.
    • (2010) ECCV , pp. 168-181
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In ICCV, pages 1365-1372, 2009.
    • (2009) ICCV , pp. 1365-1372
    • Bourdev, L.1    Malik, J.2
  • 5
    • 84973879622 scopus 로고    scopus 로고
    • P-cnn: Pose-based cnn features for action recognition
    • G. Chéron, I. Laptev, and C. Schmid. P-CNN: Pose-based CNN Features for Action Recognition. ICCV, pages 3218-3226, 2015.
    • (2015) ICCV , pp. 3218-3226
    • Chéron, G.1    Laptev, I.2    Schmid, C.3
  • 6
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition. In CVPR, pages 1110-1118, 2015.
    • (2015) CVPR , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 7
    • 84866235335 scopus 로고    scopus 로고
    • Automated vision-based recognition of construction worker actions for building interior construction operations using RGBD cameras
    • V. Escorcia, M. A. Davila, M. Golparvar-Fard, and J. C. Niebles. Automated vision-based recognition of construction worker actions for building interior construction operations using RGBD cameras. In Construction Research Congress, pages 879-888, 2012.
    • (2012) Construction Research Congress , pp. 879-888
    • Escorcia, V.1    Davila, M.A.2    Golparvar-Fard, M.3    Niebles, J.C.4
  • 8
    • 84964561049 scopus 로고    scopus 로고
    • Human action recognition by sequence of movelet codewords. in 3
    • IEEE
    • X. Feng and P. Perona. Human action recognition by sequence of movelet codewords. In 3DPVT, volume 16, pages 717-721. IEEE, 2002.
    • (2002) DPVT , vol.16 , pp. 717-721
    • Feng, X.1    Perona, P.2
  • 9
    • 84959219372 scopus 로고    scopus 로고
    • Jointly learning heterogeneous features for RGB-D activity recognition
    • J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning heterogeneous features for RGB-D activity recognition. In CVPR, pages 5344-5352, 2015.
    • (2015) CVPR , pp. 5344-5352
    • Hu, J.-F.1    Zheng, W.-S.2    Lai, J.3    Zhang, J.4
  • 10
    • 84929153375 scopus 로고    scopus 로고
    • Learning latent structure for activity recognition
    • N. Hu, G. Englebienne, Z. Lou, and B. Krose. Learning latent structure for activity recognition. In ICRA, 2014.
    • (2014) ICRA
    • Hu, N.1    Englebienne, G.2    Lou, Z.3    Krose, B.4
  • 11
    • 84898819791 scopus 로고    scopus 로고
    • Towards understanding action recognition
    • H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recognition. In ICCV, pages 3192-3199, 2013.
    • (2013) ICCV , pp. 3192-3199
    • Jhuang, H.1    Gall, J.2    Zuffi, S.3    Schmid, C.4    Black, M.J.5
  • 12
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural SVMs. Machine Learning, 77(1):27-59, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.3
  • 13
    • 0015721589 scopus 로고
    • Visual perception of biological motion and a model for its analysis
    • G. Johansson. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2):201-211, 1973.
    • (1973) Perception & Psychophysics , vol.14 , Issue.2 , pp. 201-211
    • Johansson, G.1
  • 14
    • 84959208518 scopus 로고    scopus 로고
    • Bilinear heterogeneous information machine for RGB-D action recognition
    • Y. Kong and Y. Fu. Bilinear heterogeneous information machine for RGB-D action recognition. In CVPR, pages 1054-1062, 2015.
    • (2015) CVPR , pp. 1054-1062
    • Kong, Y.1    Fu, Y.2
  • 15
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, pages 1189-1197, 2010.
    • (2010) NIPS , pp. 1189-1197
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 16
    • 84973931670 scopus 로고    scopus 로고
    • Action recognition by hierarchical mid-level action elements
    • T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-level action elements. In ICCV, pages 4552-4560, 2015.
    • (2015) ICCV , pp. 4552-4560
    • Lan, T.1    Zhu, Y.2    Zamir, A.R.3    Savarese, S.4
  • 17
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3D points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3D points. In CVPR, pages 9-14, 2010.
    • (2010) CVPR , pp. 9-14
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 18
    • 84911386198 scopus 로고    scopus 로고
    • Discriminative hierarchical modeling of spatio-temporally composable human activities
    • I. Lillo, A. Soto, and J. C. Niebles. Discriminative hierarchical modeling of spatio-temporally composable human activities. In CVPR, pages 812-819, 2014.
    • (2014) CVPR , pp. 812-819
    • Lillo, I.1    Soto, A.2    Niebles, J.C.3
  • 19
    • 80052880806 scopus 로고    scopus 로고
    • Action recognition from a distributed representation of pose and appearance
    • S. Maji, L. Bourdev, and J. Malik. Action recognition from a distributed representation of pose and appearance. In CVPR, pages 3177-3184, 2011.
    • (2011) CVPR , pp. 3177-3184
    • Maji, S.1    Bourdev, L.2    Malik, J.3
  • 20
    • 84959235704 scopus 로고    scopus 로고
    • Joint action recognition and pose estimation from video
    • B. X. Nie, C. Xiong, and S.-c. Zhu. Joint action recognition and pose estimation from video. In CVPR, pages 1293-1301, 2015.
    • (2015) CVPR , pp. 1293-1301
    • Nie, B.X.1    Xiong, C.2    Zhu, S.-C.3
  • 21
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • R. Poppe. A survey on vision-based human action recognition. Image and Vision Computing, 28(6):976-990, 2010.
    • (2010) Image and Vision Computing , vol.28 , Issue.6 , pp. 976-990
    • Poppe, R.1
  • 22
    • 24644444341 scopus 로고    scopus 로고
    • Automatic annotation of everyday movements
    • D. Ramanan and D. A. Forsyth. Automatic annotation of everyday movements. In NIPS, 2003.
    • (2003) NIPS
    • Ramanan, D.1    Forsyth, D.A.2
  • 23
    • 84866661728 scopus 로고    scopus 로고
    • Discovering discriminative action parts from mid-level video representations
    • M. Raptis, I. Kokkinos, and S. Soatto. Discovering discriminative action parts from mid-level video representations. CVPR, pages 1242-1249, 2012.
    • (2012) CVPR , pp. 1242-1249
    • Raptis, M.1    Kokkinos, I.2    Soatto, S.3
  • 24
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activities. In CVPR, pages 1194-1201, 2012.
    • (2012) CVPR , pp. 1194-1201
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 26
    • 84986296553 scopus 로고    scopus 로고
    • Moving Poselets : A Discriminative and Interpretable Skeletal Motion Representation for Action Recognition
    • L. Tao and R. Vidal. Moving Poselets : A Discriminative and Interpretable Skeletal Motion Representation for Action Recognition. In IEEE International Conference on Computer Vision Workshops, pages 61-69, 2015.
    • (2015) IEEE International Conference on Computer Vision Workshops , pp. 61-69
    • Tao, L.1    Vidal, R.2
  • 27
    • 51949085356 scopus 로고    scopus 로고
    • Pose primitive based human action recognition in videos or still images
    • C. Thurau and V. Hlavac. Pose primitive based human action recognition in videos or still images. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Thurau, C.1    Hlavac, V.2
  • 28
    • 84911376484 scopus 로고    scopus 로고
    • Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group. In CVPR, pages 588-595, 2014.
    • (2014) CVPR , pp. 588-595
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 29
    • 84890553932 scopus 로고    scopus 로고
    • A survey on activity recognition and behavior understanding in video surveillance
    • S. Vishwakarma and A. Agrawal. A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer, 29(10):983-1009, 2013.
    • (2013) The Visual Computer , vol.29 , Issue.10 , pp. 983-1009
    • Vishwakarma, S.1    Agrawal, A.2
  • 30
    • 84887346790 scopus 로고    scopus 로고
    • An approach to posebased action recognition
    • C. Wang, Y. Wang, and A. L. Yuille. An approach to posebased action recognition. In CVPR, pages 915-922, 2013.
    • (2013) CVPR , pp. 915-922
    • Wang, C.1    Wang, Y.2    Yuille, A.L.3
  • 31
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • H.Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recognition by dense trajectories. In CVPR, pages 3169-3176, 2011.
    • (2011) CVPR , pp. 3169-3176
    • Wang, H.1    Klaser, A.2    Schmid, C.3    Liu, C.-L.4
  • 32
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition with depth cameras. In CVPR, pages 1290-1297, 2012.
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 33
    • 84906484374 scopus 로고    scopus 로고
    • Video Action Detection with Relational Dynamic-Poselets
    • L. Wang, Y. Qiao, and X. Tang. Video Action Detection with Relational Dynamic-Poselets. In ECCV, pages 565-580, 2014.
    • (2014) ECCV , pp. 565-580
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 34
    • 84863371939 scopus 로고    scopus 로고
    • Learning a discriminative hidden part model for human action recognition
    • Y. Wang and G. Mori. Learning a discriminative hidden part model for human action recognition. In NIPS, pages 1721-1728, 2008.
    • (2008) NIPS , pp. 1721-1728
    • Wang, Y.1    Mori, G.2
  • 35
    • 84898783696 scopus 로고    scopus 로고
    • Concurrent action detection with structural prediction
    • P.Wei, N. Zheng, Y. Zhao, and S.-C. Zhu. Concurrent action detection with structural prediction. In ICCV, pages 3136-3143, 2013.
    • (2013) ICCV , pp. 3136-3143
    • Wei, P.1    Zheng, N.2    Zhao, Y.3    Zhu, S.-C.4
  • 36
    • 78751648503 scopus 로고    scopus 로고
    • A survey of visionbased methods for action representation, segmentation and recognition
    • D. Weinland, R. Ronfard, and E. Boyer. A survey of visionbased methods for action representation, segmentation and recognition. Journal of Computer Vision and Image Understanding, 115(2):224-241, 2011.
    • (2011) Journal of Computer Vision and Image Understanding , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3
  • 37
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • IEEE
    • B. Yao and L. Fei-Fei. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities. In CVPR, pages 17-24. IEEE, 2010.
    • (2010) CVPR , pp. 17-24
    • Yao, B.1    Fei-Fei, L.2
  • 39
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, pages 1169-1176, 2009.
    • (2009) ICML , pp. 1169-1176
    • Yu, C.1    Joachims, T.2
  • 40
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15(4):915-936, 2003.
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.1    Rangarajan, A.2
  • 41
    • 84898773205 scopus 로고    scopus 로고
    • The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection
    • M. Zanfir, M. Leordeanu, and C. Sminchisescu. The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection. In ICCV, pages 2752-2759, 2013.
    • (2013) ICCV , pp. 2752-2759
    • Zanfir, M.1    Leordeanu, M.2    Sminchisescu, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.