메뉴 건너뛰기




Volumn 101, Issue 4, 2014, Pages 883-898

Nonparametric Bayes dynamic modelling of relational data

Author keywords

Co movement data; Factor model; Financial network; Gaussian process; Latent space; Matrix factorization; Nonparametric Bayes inference

Indexed keywords


EID: 84985994730     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asu040     Document Type: Article
Times cited : (103)

References (34)
  • 2
    • 79957827711 scopus 로고    scopus 로고
    • Sparse Bayesian infinite factor models
    • BHATTACHARYA, A. & DUNSON, D. B. (2011). Sparse Bayesian infinite factor models. Biometrika 98, 291-306.
    • (2011) Biometrika , vol.98 , pp. 291-306
    • Bhattacharya, A.1    Dunson, D.B.2
  • 4
    • 84888884588 scopus 로고    scopus 로고
    • Estimating and understanding exponential random graph models
    • CHATTERJEE, S. & DIACONIS, P. (2013). Estimating and understanding exponential random graph models. Ann. Statist. 41, 2428-61.
    • (2013) Ann. Statist. , vol.41 , pp. 2428-2461
    • Chatterjee, S.1    Diaconis, P.2
  • 5
    • 84884945843 scopus 로고    scopus 로고
    • The pólya-gamma gibbs sampler for Bayesian logistic regression is uniformly ergodic
    • CHOI, M. H. & HOBERT, J. P. (2013). The Pólya-gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic. Electron. J. Statist. 7, 2054-64.
    • (2013) Electron. J. Statist. , vol.7 , pp. 2054-2064
    • Choi, M.H.1    Hobert, J.P.2
  • 8
    • 0002463234 scopus 로고    scopus 로고
    • A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data
    • DESARBO, W. S., KIM, Y. & FONG, D. (1998). A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. J. Economet. 89, 79-108.
    • (1998) J. Economet. , vol.89 , pp. 79-108
    • Desarbo, W.S.1    Kim, Y.2    Fong, D.3
  • 9
    • 84901622686 scopus 로고    scopus 로고
    • Locally adaptive factor processes for multivariate time series
    • DURANTE, D., SCARPA, B. & DUNSON, D. B. (2014). Locally adaptive factor processes for multivariate time series. J. Mach. Learn. Res. 15, 1493-522.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1493-1522
    • Durante, D.1    Scarpa, B.2    Dunson, D.B.3
  • 11
    • 38549147867 scopus 로고
    • Common risk factors in the returns on stocks and bonds
    • FAMA, E. F. & FRENCH, K. R. (1993). Common risk factors in the returns on stocks and bonds. J. Finan. Econ. 33, 3-56.
    • (1993) J. Finan. Econ. , vol.33 , pp. 3-56
    • Fama, E.F.1    French, K.R.2
  • 13
    • 72649086818 scopus 로고    scopus 로고
    • Default prior distributions and efficient posterior computation in Bayesian factor analysis
    • GHOSH, J. & DUNSON, D. B. (2009). Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comp. Graph. Statist. 18, 306-20.
    • (2009) J. Comp. Graph. Statist. , vol.18 , pp. 306-320
    • Ghosh, J.1    Dunson, D.B.2
  • 14
    • 34547980513 scopus 로고    scopus 로고
    • Recovering temporally rewiring networks: A model-based approach
    • GUO, F., HANNEKE, S., FU, W. & XING, E. P. (2007). Recovering temporally rewiring networks: A model-based approach. In Proc. Int. Conf. Mach. Learn. 227, 321-8.
    • (2007) Proc. Int. Conf. Mach. Learn. , vol.227 , pp. 321-328
    • Guo, F.1    Hanneke, S.2    Fu, W.3    Xing, E.P.4
  • 15
  • 16
    • 0001899884 scopus 로고
    • Constructing joint spaces from pick-Any" data: A new tool for consumer analysis
    • HOLBROOK, M. B.,WILLIAM, L. M. & RUSSELL, S. W. (1982). Constructing joint spaces from "pick-Any" data: A new tool for consumer analysis. J. Cons. Res. 9, 99-105.
    • (1982) J. Cons. Res. , vol.9 , pp. 99-105
    • Holbrook, M.B.1    William, L.M.2    Russell, S.W.3
  • 17
    • 84950607156 scopus 로고
    • An exponential family of probability distributions for directed graphs
    • HOLLAND, P. W. & LEINHARDT, S. (1981). An exponential family of probability distributions for directed graphs. J. Am. Statist. Assoc. 76, 33-50.
    • (1981) J. Am. Statist. Assoc. , vol.76 , pp. 33-50
    • Holland, P.W.1    Leinhardt, S.2
  • 19
    • 84863967073 scopus 로고    scopus 로고
    • Dynamic multidimensional scaling for low-complexity mobile network tracking
    • JAMALI-RAD, H. & LEUS, G. (2012). Dynamic multidimensional scaling for low-complexity mobile network tracking. IEEE Trans. Sig. Proces. 60, 4485-91.
    • (2012) IEEE Trans. Sig. Proces. , vol.60 , pp. 4485-4491
    • Jamali-Rad, H.1    Leus, G.2
  • 21
    • 85162070336 scopus 로고    scopus 로고
    • Slice sampling covariance hyperparameters of latent Gaussian models
    • MURRAY, I. & ADAMS, R. D. (2010). Slice sampling covariance hyperparameters of latent Gaussian models. In Proc. Ann. Conf. Neural Info. Proces. Syst. 23, 1732-40.
    • (2010) Proc. Ann. Conf. Neural Info. Proces. Syst. , vol.23 , pp. 1732-1740
    • Murray, I.1    Adams, R.D.2
  • 22
    • 84871342229 scopus 로고    scopus 로고
    • Dynamic factor volatility modeling: A Bayesian latent threshold approach
    • NAKAJIMA, J.&WEST, M. (2012). Dynamic factor volatility modeling: A Bayesian latent threshold approach. J. Finan. Economet. 11, 116-53.
    • (2012) J. Finan. Economet. , vol.11 , pp. 116-153
    • Nakajima, J.1    West, M.2
  • 23
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockstructures
    • NOWICKI, K. & SNIJDERS, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. J. Am. Statist. Assoc. 96, 1077-87.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1077-1087
    • Nowicki, K.1    Snijders, T.A.B.2
  • 24
    • 35349026099 scopus 로고    scopus 로고
    • Model-based clustering with dissimilarities: A Bayesian approach
    • OH, M. S. & RAFTERY, A. E. (2007). Model-based clustering with dissimilarities: A Bayesian approach. J. Comp. Graph. Statist. 16, 559-85.
    • (2007) J. Comp. Graph. Statist. , vol.16 , pp. 559-585
    • Ou, S.M.1    Raftery, A.E.2
  • 25
    • 84884917671 scopus 로고    scopus 로고
    • Bayesian inference for logistic models using pólya-gamma latent variables
    • POLSON, N. G., SCOTT, J. G. & WINDLE, J. (2013). Bayesian inference for logistic models using Pólya-gamma latent variables. J. Am. Statist. Assoc. 108, 1339-49.
    • (2013) J. Am. Statist. Assoc. , vol.108 , pp. 1339-1349
    • Polson, N.G.1    Scott, J.G.2    Windle, J.3
  • 26
    • 0035648177 scopus 로고    scopus 로고
    • Random graph models for temporal processes in social networks
    • ROBINS, G. & PATTISON, P. (2001). Random graph models for temporal processes in social networks. J. Math. Sociol. 25, 5-41.
    • (2001) J. Math. Sociol. , vol.25 , pp. 5-41
    • Robins, G.1    Pattison, P.2
  • 29
    • 0003314308 scopus 로고    scopus 로고
    • Markov chain monte carlo estimation of exponential random graph models
    • SNIJDERS, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3, 1-40.
    • (2002) J. Soc. Struct. , vol.3 , pp. 1-40
    • Snijders, T.A.B.1
  • 30
    • 0001399123 scopus 로고
    • Pseudolikelihood estimation for social networks
    • STRAUSS, D. & IKEDA, M. (1990). Pseudolikelihood estimation for social networks. J. Am. Statist. Assoc. 85, 204-12.
    • (1990) J. Am. Statist. Assoc. , vol.85 , pp. 204-212
    • Strauss, D.1    Ikeda, M.2
  • 33
    • 79960461257 scopus 로고    scopus 로고
    • A state-space mixed membership blockmodel for dynamic network tomography
    • XING, E. P., FU, W. & SONG, L. (2010). A state-space mixed membership blockmodel for dynamic network tomography. Ann. Appl. Statist. 4, 535-66.
    • (2010) Ann. Appl. Statist. , vol.4 , pp. 535-566
    • Xing, E.P.1    Fu, W.2    Song, L.3
  • 34
    • 84874802247 scopus 로고    scopus 로고
    • Dynamic stochastic blockmodels: Statistical models for time-evolving networks
    • XU, K. & HERO III, A. (2013). Dynamic stochastic blockmodels: Statistical models for time-evolving networks. In Proc. Int. Conf. Social Comp. Behav.-Cult. Mod. Predict., 201-10.
    • (2013) Proc. Int. Conf. Social Comp. Behav.-Cult. Mod. Predict. , pp. 201-210
    • Xu, K.1    Hero, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.