-
2
-
-
84860244324
-
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
-
May
-
A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J.Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Transactions on Information Theory, 58 (5): 3235-3249, May 2012.
-
(2012)
IEEE Transactions on Information Theory
, vol.58
, Issue.5
, pp. 3235-3249
-
-
Agarwal, A.1
Bartlett, P.L.2
Ravikumar, P.3
Wainwright, M.J.4
-
4
-
-
80555158386
-
Self-concordant analysis for logistic regression
-
F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384-414, 2010.
-
(2010)
Electronic Journal of Statistics
, vol.4
, pp. 384-414
-
-
Bach, F.1
-
5
-
-
85162480829
-
Non-asymptotic analysis of stochastic approximation algorithms for machine learning
-
F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Neural Information Processing Systems (NIPS), 2011.
-
(2011)
Neural Information Processing Systems (NIPS)
-
-
Bach, F.1
Moulines, E.2
-
6
-
-
84899001337
-
Non-strongly-convex smooth stochastic approximation with convergence rate O (1=n)
-
F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate O (1=n). In Neural Information Processing Systems (NIPS), 2013.
-
(2013)
Neural Information Processing Systems (NIPS)
-
-
Bach, F.1
Moulines, E.2
-
11
-
-
68949134067
-
Asymptotically efficient stochastic approximation; The RM case
-
V. Fabian. Asymptotically efficient stochastic approximation; the RM case. Annals of Statistics, 1 (3), 1973.
-
(1973)
Annals of Statistics
, vol.1
, Issue.3
-
-
Fabian, V.1
-
12
-
-
84907359690
-
Beyond the regret minimization barrier: Optimal algorithms for stochastic strongly-convex optimization
-
E. Hazan and S. Kale. Beyond the regret minimization barrier: Optimal algorithms for stochastic strongly-convex optimization. Journal of Machine Learning Research, 15:2489-2512, 2014. URL http://jmlr.org/papers/v15/hazan14a.html.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 2489-2512
-
-
Hazan, E.1
Kale, S.2
-
14
-
-
84859392380
-
Tail inequalities for sums of random matrices that depend on the intrinsic dimension
-
D. Hsu, S. M. Kakade, and T. Zhang. Tail inequalities for sums of random matrices that depend on the intrinsic dimension. Electronic Communications in Probability, 17 (14): 1-13, 2012.
-
(2012)
Electronic Communications in Probability
, vol.17
, Issue.14
, pp. 1-13
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
15
-
-
84900406823
-
Random design analysis of ridge regression
-
June
-
D. Hsu, S. M. Kakade, and T. Zhang. Random design analysis of ridge regression. Foundations of Computational Mathematics, 14 (3): 569-600, June 2014.
-
(2014)
Foundations of Computational Mathematics
, vol.14
, Issue.3
, pp. 569-600
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
22
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19 (4): 1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
25
-
-
0026899240
-
Acceleration of stochastic approximation by averaging
-
July
-
B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30 (4): 838-855, July 1992. ISSN 0363-0129.
-
(1992)
SIAM Journal on Control and Optimization
, vol.30
, Issue.4
, pp. 838-855
-
-
Polyak, B.T.1
Juditsky, A.B.2
-
29
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss
-
February
-
S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss. Journal of Machine Learning Research (JMLR), 14 (1): 567-599, February 2013.
-
(2013)
Journal of Machine Learning Research (JMLR)
, vol.14
, Issue.1
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
30
-
-
78649409695
-
Learnability, stability and uniform convergence
-
December
-
S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform convergence. Journal of Machine Learning Research, 11:2635-2670, December 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2635-2670
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
33
-
-
84906663901
-
Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence
-
Pierre Tarres and Yuan Yao. Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence. IEEE Transactions on Information Theory, 60 (9): 5716-5735, 2014.
-
(2014)
IEEE Transactions on Information Theory
, vol.60
, Issue.9
, pp. 5716-5735
-
-
Tarres, P.1
Yao, Y.2
-
35
-
-
78649381411
-
On complexity issues of online learning algorithms
-
Yuan Yao. On complexity issues of online learning algorithms. IEEE Transactions on Information Theory, 56 (12), 2010.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.12
-
-
Yao, Y.1
-
36
-
-
52949113792
-
Online gradient descent learning algorithms
-
Yiming Ying and Massimiliano Pontil. Online gradient descent learning algorithms. Foundations of Computational Mathematics, 8 (5): 561-596, 2008.
-
(2008)
Foundations of Computational Mathematics
, vol.8
, Issue.5
, pp. 561-596
-
-
Ying, Y.1
Pontil, M.2
|