메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs

Author keywords

Ensemble learning; Feature; Genetic algorithm; PiRNA

Indexed keywords

GENETIC ALGORITHMS; LEARNING SYSTEMS; MAMMALS; NUCLEIC ACIDS;

EID: 84984628506     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1206-3     Document Type: Article
Times cited : (71)

References (49)
  • 1
    • 24644505259 scopus 로고    scopus 로고
    • Fewer genes, more noncoding RNA
    • Jean-Michel C. Fewer genes, more noncoding RNA. Science. 2005;309(5740):1529-30.
    • (2005) Science , vol.309 , Issue.5740 , pp. 1529-1530
    • Jean-Michel, C.1
  • 2
    • 24644443227 scopus 로고    scopus 로고
    • The functional genomics of noncoding RNA
    • Mattick JS. The functional genomics of noncoding RNA. Science. 2005;309(5740):1527-8.
    • (2005) Science , vol.309 , Issue.5740 , pp. 1527-1528
    • Mattick, J.S.1
  • 5
    • 78649646228 scopus 로고    scopus 로고
    • Existence of snoRNA, microRNA, piRNA characteristics in a novel non-coding RNA: x-ncRNA and its biological implication in Homo sapiens
    • Meenakshisundaram K, Carmen L, Michela B, Diego DB, Gabriella M, Rosaria V. Existence of snoRNA, microRNA, piRNA characteristics in a novel non-coding RNA: x-ncRNA and its biological implication in Homo sapiens. J Bioinformatics Seq Anal. 2009;1(2):31-40.
    • (2009) J Bioinformatics Seq Anal , vol.1 , Issue.2 , pp. 31-40
    • Meenakshisundaram, K.1    Carmen, L.2    Michela, B.3    Diego, D.B.4    Gabriella, M.5    Rosaria, V.6
  • 8
    • 33745621037 scopus 로고    scopus 로고
    • A novel class of small RNAs in mouse spermatogenic cells
    • Grivna ST, Ergin B, Zhong W, Haifan L. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006;20(13):1709-14.
    • (2006) Genes Dev , vol.20 , Issue.13 , pp. 1709-1714
    • Grivna, S.T.1    Ergin, B.2    Zhong, W.3    Haifan, L.4
  • 9
    • 34249805994 scopus 로고    scopus 로고
    • The coming of age for Piwi proteins
    • Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell. 2007;26(5):603-9.
    • (2007) Mol Cell , vol.26 , Issue.5 , pp. 603-609
    • Seto, A.G.1    Kingston, R.E.2    Lau, N.C.3
  • 10
    • 33845436047 scopus 로고    scopus 로고
    • Large-scale sequencing reveals 21U-RNAs and additional Micro-RNAs and endogenous siRNAs in C. elegans
    • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP. Large-scale sequencing reveals 21U-RNAs and additional Micro-RNAs and endogenous siRNAs in C. elegans. Cell. 2007;127(6):1193-207.
    • (2007) Cell , vol.127 , Issue.6 , pp. 1193-1207
    • Ruby, J.G.1    Jan, C.2    Player, C.3    Axtell, M.J.4    Lee, W.5    Nusbaum, C.6    Ge, H.7    Bartel, D.P.8
  • 11
    • 0032443562 scopus 로고    scopus 로고
    • A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal
    • Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998;12(23):3715-27.
    • (1998) Genes Dev , vol.12 , Issue.23 , pp. 3715-3727
    • Cox, D.N.1    Chao, A.2    Baker, J.3    Chang, L.4    Qiao, D.5    Lin, H.6
  • 12
    • 38849167412 scopus 로고    scopus 로고
    • Biogenesis and germline functions of piRNAs
    • Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135(1):3-9.
    • (2008) Development , vol.135 , Issue.1 , pp. 3-9
    • Klattenhoff, C.1    Theurkauf, W.2
  • 13
    • 33947273235 scopus 로고    scopus 로고
    • Discrete small RNA-Generating Loci as master regulators of transposon activity in drosophila
    • Brennecke BJ, Aravin A, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon G. Discrete small RNA-Generating Loci as master regulators of transposon activity in drosophila. Cell. 2007;128(6):1089-103.
    • (2007) Cell , vol.128 , Issue.6 , pp. 1089-1103
    • Brennecke, B.J.1    Aravin, A.2    Stark, A.3    Dus, M.4    Kellis, M.5    Sachidanandam, R.6    Hannon, G.7
  • 14
    • 70350238350 scopus 로고    scopus 로고
    • The biogenesis and function of PIWI proteins and piRNAs: progress and prospect
    • Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25(1):355-76.
    • (2009) Annu Rev Cell Dev Biol , vol.25 , Issue.1 , pp. 355-376
    • Thomson, T.1    Lin, H.2
  • 18
    • 36048937264 scopus 로고    scopus 로고
    • An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster
    • Hang Y, Haifan L. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007;450(7167):304-8.
    • (2007) Nature , vol.450 , Issue.7167 , pp. 304-308
    • Hang, Y.1    Haifan, L.2
  • 20
    • 79952589852 scopus 로고    scopus 로고
    • A k-mer scheme to predict piRNAs and characterize locust piRNAs
    • Zhang Y, Wang X, Kang L. A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics. 2011;27(6):771-6.
    • (2011) Bioinformatics , vol.27 , Issue.6 , pp. 771-776
    • Zhang, Y.1    Wang, X.2    Kang, L.3
  • 21
    • 84924086718 scopus 로고    scopus 로고
    • Prediction of piRNAs using transposon interaction and a support vector machine
    • Wang K, Liang C, Liu J, Xiao H, Huang S, Xu J, Li F. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics. 2014;15(1):1-8.
    • (2014) BMC Bioinformatics , vol.15 , Issue.1 , pp. 1-8
    • Wang, K.1    Liang, C.2    Liu, J.3    Xiao, H.4    Huang, S.5    Xu, J.6    Li, F.7
  • 22
    • 84963736173 scopus 로고    scopus 로고
    • Accurate prediction of transposon-derived piRNAs by integrating various sequential and physicochemical features
    • Luo L, Li D, Zhang W, Tu S, Zhu X, Tian G. Accurate prediction of transposon-derived piRNAs by integrating various sequential and physicochemical features. PLoS One. 2016;11(4):e0153268.
    • (2016) PLoS One , vol.11 , Issue.4
    • Luo, L.1    Li, D.2    Zhang, W.3    Tu, S.4    Zhu, X.5    Tian, G.6
  • 24
    • 84891771466 scopus 로고    scopus 로고
    • The UCSC genome browser database: 2014 update
    • Karolchik D, Barber G, Casper J, et al. The UCSC genome browser database: 2014 update. Nucleic Acids Res. 2014;42 suppl 1:D590-8.
    • (2014) Nucleic Acids Res , vol.42 , pp. D590-D598
    • Karolchik, D.1    Barber, G.2    Casper, J.3
  • 25
    • 13444304325 scopus 로고    scopus 로고
    • NCBI GEO: mining millions of expression profiles-database and tools
    • Barrett T, Suzek TO, Troup DB, et al. NCBI GEO: mining millions of expression profiles-database and tools. Nucleic Acids Res. 2005;33(D1):D562-6.
    • (2005) Nucleic Acids Res , vol.33 , Issue.1 , pp. D562-D566
    • Barrett, T.1    Suzek, T.O.2    Troup, D.B.3
  • 26
    • 53749083993 scopus 로고    scopus 로고
    • SeqMap: mapping massive amount of oligonucleotides to the genome
    • Jiang H, Wong WH. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics. 2008;24(20):2395-6.
    • (2008) Bioinformatics , vol.24 , Issue.20 , pp. 2395-2396
    • Jiang, H.1    Wong, W.H.2
  • 27
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: a string kernel for SVM protein classification
    • Leslie C, Eskin E, Noble WS. The spectrum kernel: a string kernel for SVM protein classification. Biocomputing. 2002;7:564-75.
    • (2002) Biocomputing. , vol.7 , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.S.3
  • 28
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu B, Liu FL, Wang XL, Chen JJ, Fang LY, Chou KC. Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015;43(W1):W65-71.
    • (2015) Nucleic Acids Res , vol.43 , Issue.1 , pp. W65-71
    • Liu, B.1    Liu, F.L.2    Wang, X.L.3    Chen, J.J.4    Fang, L.Y.5    Chou, K.C.6
  • 29
    • 84927712367 scopus 로고    scopus 로고
    • repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu B, Liu FL, Fang LY, Wang XL, Chou KC. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics. 2015;31(8):1307-9.
    • (2015) Bioinformatics , vol.31 , Issue.8 , pp. 1307-1309
    • Liu, B.1    Liu, F.L.2    Fang, L.Y.3    Wang, X.L.4    Chou, K.C.5
  • 31
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie CS, Eskin E, Cohen A, Weston J, Noble WS. Mismatch string kernels for discriminative protein classification. Bioinformatics. 2004;20(4):467-76.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467-476
    • Leslie, C.S.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 35
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition
    • Chen W, Lei T, Jin D, et al. PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition. Anal Biochem. 2014;456(1):53-60.
    • (2014) Anal Biochem , vol.456 , Issue.1 , pp. 53-60
    • Chen, W.1    Lei, T.2    Jin, D.3
  • 36
    • 84892958175 scopus 로고    scopus 로고
    • iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu WR, Xiao X, Chou KC. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int J Mol Sci. 2014;15(2):1746-66.
    • (2014) Int J Mol Sci , vol.15 , Issue.2 , pp. 1746-1766
    • Qiu, W.R.1    Xiao, X.2    Chou, K.C.3
  • 37
    • 80051623308 scopus 로고    scopus 로고
    • Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature
    • Zhang W, Xiong Y, Zhao M, et al. Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics. 2011;12(2):341.
    • (2011) BMC Bioinformatics , vol.12 , Issue.2 , pp. 341
    • Zhang, W.1    Xiong, Y.2    Zhao, M.3
  • 38
    • 0034072450 scopus 로고    scopus 로고
    • DNA binding sites: representation and discovery
    • Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000;16(1):16-23.
    • (2000) Bioinformatics , vol.16 , Issue.1 , pp. 16-23
    • Stormo, G.D.1
  • 39
    • 33747885942 scopus 로고    scopus 로고
    • On counting position weight matrix matches in a sequence, with application to discriminative motif finding
    • Sinha S. On counting position weight matrix matches in a sequence, with application to discriminative motif finding. Bioinformatics. 2006;22(14):e454-63.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. e454-e463
    • Sinha, S.1
  • 40
    • 84901319636 scopus 로고    scopus 로고
    • Position weight matrix, Gibbs sampler, and the associated significance tests in Motif characterization and prediction
    • Xia X. Position weight matrix, Gibbs sampler, and the associated significance tests in Motif characterization and prediction. Scientifica. 2012;917540-917555.
    • (2012) Scientifica , pp. 917540-917555
    • Xia, X.1
  • 41
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
    • Xue C, Fei L, Tao H, Liu GP, Li Y, Zhang X. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics. 2005;6(2):1-7.
    • (2005) BMC Bioinformatics , vol.6 , Issue.2 , pp. 1-7
    • Xue, C.1    Fei, L.2    Tao, H.3    Liu, G.P.4    Li, Y.5    Zhang, X.6
  • 42
    • 55749083578 scopus 로고    scopus 로고
    • RNAplex: a fast tool for RNA-RNA interaction search
    • Tafer H, Hofacker IL. RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics. 2008;24(22):2657-63.
    • (2008) Bioinformatics , vol.24 , Issue.22 , pp. 2657-2663
    • Tafer, H.1    Hofacker, I.L.2
  • 43
    • 81255197618 scopus 로고    scopus 로고
    • Ensemble approaches for improving HLA class I-peptide binding prediction
    • Hu X, Mamitsuka H, Zhu S. Ensemble approaches for improving HLA class I-peptide binding prediction. J Immunol Methods. 2011;374(1-2):47-52.
    • (2011) J Immunol Methods , vol.374 , Issue.1-2 , pp. 47-52
    • Hu, X.1    Mamitsuka, H.2    Zhu, S.3
  • 44
    • 84865183573 scopus 로고    scopus 로고
    • Computational prediction of conformational B-Cell Epitopes from antigen primary structures by ensemble learning
    • Zhang W, Niu Y, Xiong Y, Zhao M, Yu R, Liu J. Computational prediction of conformational B-Cell Epitopes from antigen primary structures by ensemble learning. PLoS One. 2012;7(8):e43575.
    • (2012) PLoS One , vol.7 , Issue.8
    • Zhang, W.1    Niu, Y.2    Xiong, Y.3    Zhao, M.4    Yu, R.5    Liu, J.6
  • 45
    • 84934996079 scopus 로고    scopus 로고
    • Accurate prediction of immunogenic T-Cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning
    • Zhang W, Niu Y, Zou H, Luo L, Liu Q, Wu W. Accurate prediction of immunogenic T-Cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning. PLoS One. 2015;10(5):e0128194.
    • (2015) PLoS One , vol.10 , Issue.5
    • Zhang, W.1    Niu, Y.2    Zou, H.3    Luo, L.4    Liu, Q.5    Wu, W.6
  • 46
    • 84894543745 scopus 로고    scopus 로고
    • Predicting immunogenic T-cell epitopes by combining various sequence-derived features. In IEEE International Conference on Bioinformatics and Biomedicine
    • Shanghai: IEEE Computer Society
    • Zhang W, Liu J, Xiong Y, Ke M, Zhang K. Predicting immunogenic T-cell epitopes by combining various sequence-derived features. In IEEE International Conference on Bioinformatics and Biomedicine. Shanghai: IEEE Computer Society; 2013. p. 4-9.
    • (2013) , pp. 4-9
    • Zhang, W.1    Liu, J.2    Xiong, Y.3    Ke, M.4    Zhang, K.5
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273-97.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 49
    • 0028409149 scopus 로고
    • Adaptive probabilities of crossover and mutation in genetic algorithms
    • Srinivas M, Patnaik LM. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern. 1994;24(4):656-67.
    • (1994) IEEE Trans Syst Man Cybern , vol.24 , Issue.4 , pp. 656-667
    • Srinivas, M.1    Patnaik, L.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.