-
1
-
-
17644387736
-
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
-
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices Nat. Mater. 2005, 4, 366-377 10.1038/nmat1368
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
Van Schalkwijk, W.5
-
2
-
-
54949100767
-
Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices
-
Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices Adv. Mater. 2008, 20, 2878-2887 10.1002/adma.200800627
-
(2008)
Adv. Mater.
, vol.20
, pp. 2878-2887
-
-
Guo, Y.G.1
Hu, J.S.2
Wan, L.J.3
-
3
-
-
84880151349
-
Nanomaterials for Energy Conversion and Storage
-
Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for Energy Conversion and Storage Chem. Soc. Rev. 2013, 42, 3127-3171 10.1039/c3cs00009e
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 3127-3171
-
-
Zhang, Q.1
Uchaker, E.2
Candelaria, S.L.3
Cao, G.4
-
4
-
-
7544234502
-
What Are Batteries, Fuel Cells, and Supercapacitors?
-
Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245-4270 10.1021/cr020730k
-
(2004)
Chem. Rev.
, vol.104
, pp. 4245-4270
-
-
Winter, M.1
Brodd, R.J.2
-
6
-
-
78449289476
-
Solar Water Splitting Cells
-
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells Chem. Rev. 2010, 110, 6446-6473 10.1021/cr1002326
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.5
Santori, E.A.6
Lewis, N.S.7
-
7
-
-
84863107770
-
4-Graphene Hybrid as an Oxygen Cathode Catalyst
-
4-Graphene Hybrid as an Oxygen Cathode Catalyst Energy Environ. Sci. 2012, 5, 7931-7935 10.1039/c2ee21746e
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7931-7935
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
Zheng, G.4
Li, Y.5
Cui, Y.6
Dai, H.7
-
8
-
-
77957301555
-
A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation
-
Gorlin, Y.; Jaramillo, T. F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation J. Am. Chem. Soc. 2010, 132, 13612-13614 10.1021/ja104587v
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13612-13614
-
-
Gorlin, Y.1
Jaramillo, T.F.2
-
9
-
-
77952794660
-
Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts
-
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts Nat. Chem. 2010, 2, 454-460 10.1038/nchem.623
-
(2010)
Nat. Chem.
, vol.2
, pp. 454-460
-
-
Strasser, P.1
Koh, S.2
Anniyev, T.3
Greeley, J.4
More, K.5
Yu, C.6
Liu, Z.7
Kaya, S.8
Nordlund, D.9
Ogasawara, H.10
-
11
-
-
80053050322
-
4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction
-
4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction Nat. Mater. 2011, 10, 780-786 10.1038/nmat3087
-
(2011)
Nat. Mater.
, vol.10
, pp. 780-786
-
-
Liang, Y.1
Li, Y.2
Wang, H.3
Zhou, J.4
Wang, J.5
Regier, T.6
Dai, H.7
-
12
-
-
84921317025
-
4 Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation
-
4 Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation ACS Appl. Mater. Interfaces 2015, 7, 442-451 10.1021/am506450c
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 442-451
-
-
Singh, S.K.1
Dhavale, V.M.2
Kurungot, S.3
-
13
-
-
84983526400
-
Surface Oxidized Dicobalt Phosphide Nanoneedles as a Non-Precious, Durable and Efficient OER Catalyst
-
Dutta, A.; Samantara, A. K.; Dutta, S. K.; Jena, B. K.; Pradhan, N. Surface Oxidized Dicobalt Phosphide Nanoneedles as a Non-Precious, Durable and Efficient OER Catalyst ACS Energy Lett. 2016, 1, 169-174 10.1021/acsenergylett.6b00144
-
(2016)
ACS Energy Lett.
, vol.1
, pp. 169-174
-
-
Dutta, A.1
Samantara, A.K.2
Dutta, S.K.3
Jena, B.K.4
Pradhan, N.5
-
14
-
-
84921659350
-
Metal-Organic Framework-Derived Nickel Phosphides as Efficient Electrocatalysts toward Sustainable Hydrogen Generation from Water Splitting
-
Tian, T.; Ai, L.; Jiang, J. Metal-Organic Framework-Derived Nickel Phosphides as Efficient Electrocatalysts toward Sustainable Hydrogen Generation from Water Splitting RSC Adv. 2015, 5, 10290-10295 10.1039/C4RA15680C
-
(2015)
RSC Adv.
, vol.5
, pp. 10290-10295
-
-
Tian, T.1
Ai, L.2
Jiang, J.3
-
15
-
-
84906096303
-
2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media
-
2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media J. Am. Chem. Soc. 2014, 136, 11452-11464 10.1021/ja505186m
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 11452-11464
-
-
Meng, Y.1
Song, W.2
Huang, H.3
Ren, Z.4
Chen, S.-Y.5
Suib, S.L.6
-
16
-
-
84879106448
-
4 (M= Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction
-
4 (M= Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction Nano Lett. 2013, 13, 2947-2951 10.1021/nl401325u
-
(2013)
Nano Lett.
, vol.13
, pp. 2947-2951
-
-
Zhu, H.1
Zhang, S.2
Huang, Y.-X.3
Wu, L.4
Sun, S.5
-
17
-
-
83255187152
-
A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
-
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles Science 2011, 334, 1383-1385 10.1126/science.1212858
-
(2011)
Science
, vol.334
, pp. 1383-1385
-
-
Suntivich, J.1
May, K.J.2
Gasteiger, H.A.3
Goodenough, J.B.4
Shao-Horn, Y.5
-
18
-
-
84869454313
-
Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts
-
May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y. Influence of Oxygen Evolution During Water Oxidation on the Surface of Perovskite Oxide Catalysts J. Phys. Chem. Lett. 2012, 3, 3264-3270 10.1021/jz301414z
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 3264-3270
-
-
May, K.J.1
Carlton, C.E.2
Stoerzinger, K.A.3
Risch, M.4
Suntivich, J.5
Lee, Y.-L.6
Grimaud, A.7
Shao-Horn, Y.8
-
19
-
-
84901699575
-
Spinel Mn-Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting
-
Zhao, A.; Masa, J.; Xia, W.; Maljusch, A.; Willinger, M.-G.; Clavel, G.; Xie, K.; Schlögl, R.; Schuhmann, W.; Muhler, M. Spinel Mn-Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting J. Am. Chem. Soc. 2014, 136, 7551-7554 10.1021/ja502532y
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7551-7554
-
-
Zhao, A.1
Masa, J.2
Xia, W.3
Maljusch, A.4
Willinger, M.-G.5
Clavel, G.6
Xie, K.7
Schlögl, R.8
Schuhmann, W.9
Muhler, M.10
-
21
-
-
84904968826
-
4@CNT with High Catalytic Activity for CO Oxidation under Moisture-Rich Conditions
-
4@CNT with High Catalytic Activity for CO Oxidation under Moisture-Rich Conditions ACS Appl. Mater. Interfaces 2014, 6, 11311-11317 10.1021/am501815d
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 11311-11317
-
-
Kuo, C.-H.1
Li, W.2
Song, W.3
Luo, Z.4
Poyraz, A.S.5
Guo, Y.6
Ma, A.W.7
Suib, S.L.8
He, J.9
-
22
-
-
84912564498
-
2S Diffusion
-
2S Diffusion Chem. Mater. 2014, 26, 6613-6621 10.1021/cm503405a
-
(2014)
Chem. Mater.
, vol.26
, pp. 6613-6621
-
-
Pahalagedara, L.R.1
Poyraz, A.S.2
Song, W.3
Kuo, C.-H.4
Pahalagedara, M.N.5
Meng, Y.-T.6
Suib, S.L.7
-
23
-
-
84903755846
-
4 and CO Oxidation
-
4 and CO Oxidation Angew. Chem., Int. Ed. 2014, 53, 7223-7227 10.1002/anie.201403461
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 7223-7227
-
-
Ren, Z.1
Botu, V.2
Wang, S.3
Meng, Y.4
Song, W.5
Guo, Y.6
Ramprasad, R.7
Suib, S.L.8
Gao, P.X.9
-
24
-
-
84936816766
-
4 Based Nano-Array Catalysts: Ni Dopant Effect, Reaction Mechanism and Structural Stability
-
4 Based Nano-Array Catalysts: Ni Dopant Effect, Reaction Mechanism and Structural Stability Appl. Catal., B 2016, 180, 150-160 10.1016/j.apcatb.2015.04.021
-
(2016)
Appl. Catal., B
, vol.180
, pp. 150-160
-
-
Ren, Z.1
Wu, Z.2
Song, W.3
Xiao, W.4
Guo, Y.5
Ding, J.6
Suib, S.L.7
Gao, P.-X.8
-
25
-
-
84906269282
-
4/Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution
-
4/Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution ACS Appl. Mater. Interfaces 2014, 6, 12684-12691 10.1021/am502675c
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 12684-12691
-
-
Ge, X.1
Liu, Y.2
Goh, F.T.3
Hor, T.A.4
Zong, Y.5
Xiao, P.6
Zhang, Z.7
Lim, S.H.8
Li, B.9
Wang, X.10
Liu, Z.11
-
26
-
-
84930202429
-
4 Nanostructured Films as Bifunctional Oxygen Electrocatalysts
-
4 Nanostructured Films as Bifunctional Oxygen Electrocatalysts Chem. Commun. 2015, 51, 9511-9514 10.1039/C5CC02262B
-
(2015)
Chem. Commun.
, vol.51
, pp. 9511-9514
-
-
Lambert, T.N.1
Vigil, J.A.2
White, S.E.3
Davis, D.J.4
Limmer, S.J.5
Burton, P.D.6
Coker, E.N.7
Beechem, T.E.8
Brumbach, M.T.9
-
27
-
-
84900256379
-
4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution
-
4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution Chem. Mater. 2014, 26, 1889-1895 10.1021/cm4040903
-
(2014)
Chem. Mater.
, vol.26
, pp. 1889-1895
-
-
Liu, X.1
Chang, Z.2
Luo, L.3
Xu, T.4
Lei, X.5
Liu, J.6
Sun, X.7
-
28
-
-
84929379852
-
Synthesis of Mesoporous Iron Oxides by an Inverse Micelle Method and Their Application in the Degradation of Orange II under Visible Light at Neutral PH
-
Jiang, T.; Poyraz, A. S.; Iyer, A.; Zhang, Y.; Luo, Z.; Zhong, W.; Miao, R.; El-Sawy, A. M.; Guild, C. J.; Sun, Y. et al. Synthesis of Mesoporous Iron Oxides by an Inverse Micelle Method and Their Application in the Degradation of Orange II under Visible Light at Neutral PH J. Phys. Chem. C 2015, 119, 10454-10468 10.1021/acs.jpcc.5b02057
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 10454-10468
-
-
Jiang, T.1
Poyraz, A.S.2
Iyer, A.3
Zhang, Y.4
Luo, Z.5
Zhong, W.6
Miao, R.7
El-Sawy, A.M.8
Guild, C.J.9
Sun, Y.10
-
30
-
-
20244377800
-
Block Copolymer-Templated Mesoporous Oxides
-
Soler-Illia, G. J.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Block Copolymer-Templated Mesoporous Oxides Curr. Opin. Colloid Interface Sci. 2003, 8, 109-126 10.1016/S1359-0294(03)00002-5
-
(2003)
Curr. Opin. Colloid Interface Sci.
, vol.8
, pp. 109-126
-
-
Soler-Illia, G.J.1
Crepaldi, E.L.2
Grosso, D.3
Sanchez, C.4
-
31
-
-
84890603730
-
A General Approach to Crystalline and Monomodal Pore Size Mesoporous Materials
-
Poyraz, A. S.; Kuo, C.-H.; Biswas, S.; King'ondu, C. K.; Suib, S. L. A General Approach to Crystalline and Monomodal Pore Size Mesoporous Materials Nat. Commun. 2013, 4, 2952 10.1038/ncomms3952
-
(2013)
Nat. Commun.
, vol.4
, pp. 2952
-
-
Poyraz, A.S.1
Kuo, C.-H.2
Biswas, S.3
King'Ondu, C.K.4
Suib, S.L.5
-
33
-
-
84863115319
-
Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts
-
Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts J. Am. Chem. Soc. 2012, 134, 3517-3523 10.1021/ja210924t
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 3517-3523
-
-
Liang, Y.1
Wang, H.2
Zhou, J.3
Li, Y.4
Wang, J.5
Regier, T.6
Dai, H.7
-
34
-
-
84927599781
-
4 toward Oxygen Evolution Reaction
-
4 toward Oxygen Evolution Reaction Catal. Commun. 2015, 67, 78-82 10.1016/j.catcom.2015.04.012
-
(2015)
Catal. Commun.
, vol.67
, pp. 78-82
-
-
Zhang, Y.1
Ding, F.2
Deng, C.3
Zhen, S.4
Li, X.5
Xue, Y.6
Yan, Y.-M.7
Sun, K.8
-
35
-
-
84881127362
-
4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction
-
4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction Sci. Rep. 2013, 3, 2300 10.1038/srep02300
-
(2013)
Sci. Rep.
, vol.3
, pp. 2300
-
-
Xiao, J.1
Kuang, Q.2
Yang, S.3
Xiao, F.4
Wang, S.5
Guo, L.6
-
36
-
-
84982747147
-
High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity
-
Menezes, P. W.; Indra, A.; González-Flores, D.; Sahraie, N. R.; Zaharieva, I.; Schwarze, M.; Strasser, P.; Dau, H.; Driess, M. High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity ACS Catal. 2015, 5, 2017-2027 10.1021/cs501724v
-
(2015)
ACS Catal.
, vol.5
, pp. 2017-2027
-
-
Menezes, P.W.1
Indra, A.2
González-Flores, D.3
Sahraie, N.R.4
Zaharieva, I.5
Schwarze, M.6
Strasser, P.7
Dau, H.8
Driess, M.9
-
37
-
-
84881453501
-
4 Spinels as Stable, Bifunctional, Noble Metal-Free Oxygen Electrocatalysts
-
4 Spinels as Stable, Bifunctional, Noble Metal-Free Oxygen Electrocatalysts J. Mater. Chem. A 2013, 1, 9992-10001 10.1039/c3ta11917c
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 9992-10001
-
-
Sa, Y.J.1
Kwon, K.2
Cheon, J.Y.3
Kleitz, F.4
Joo, S.H.5
-
38
-
-
84884308006
-
4 Spinel Nanowire Arrays as a Bifunctional Catalyst for the Oxygen Reduction and Evolution Reaction
-
4 Spinel Nanowire Arrays as a Bifunctional Catalyst for the Oxygen Reduction and Evolution Reaction J. Mater. Chem. A 2013, 1, 12170-12177 10.1039/c3ta12118f
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 12170-12177
-
-
Jin, C.1
Lu, F.2
Cao, X.3
Yang, Z.4
Yang, R.5
-
39
-
-
84905990058
-
4 with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation at - 60°C
-
4 with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation at-60°C Chem. Mater. 2014, 26, 4629-4639 10.1021/cm502106v
-
(2014)
Chem. Mater.
, vol.26
, pp. 4629-4639
-
-
Song, W.1
Poyraz, A.S.2
Meng, Y.3
Ren, Z.4
Chen, S.-Y.5
Suib, S.L.6
-
40
-
-
84866696454
-
Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes
-
Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J. et al. Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes J. Am. Chem. Soc. 2012, 134, 15849-15857 10.1021/ja305623m
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15849-15857
-
-
Liang, Y.1
Wang, H.2
Diao, P.3
Chang, W.4
Hong, G.5
Li, Y.6
Gong, M.7
Xie, L.8
Zhou, J.9
Wang, J.10
-
41
-
-
77951973331
-
4 Nanowire Arrays for Electrocatalytic Oxygen Evolution
-
4 Nanowire Arrays for Electrocatalytic Oxygen Evolution Adv. Mater. 2010, 22, 1926-1929 10.1002/adma.200903896
-
(2010)
Adv. Mater.
, vol.22
, pp. 1926-1929
-
-
Li, Y.1
Hasin, P.2
Wu, Y.3
-
43
-
-
84904994054
-
2 by Mild Transformations of Amorphous Mesoporous Manganese Oxides and Their Enhanced Redox Properties
-
2 by Mild Transformations of Amorphous Mesoporous Manganese Oxides and Their Enhanced Redox Properties ACS Appl. Mater. Interfaces 2014, 6, 10986-10991 10.1021/am502846e
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 10986-10991
-
-
Poyraz, A.S.1
Song, W.2
Kriz, D.3
Kuo, C.-H.4
Seraji, M.S.5
Suib, S.L.6
-
44
-
-
35048887014
-
ad Monolayer Vibrational Properties and Electrooxidation Kinetics
-
ad Monolayer Vibrational Properties and Electrooxidation Kinetics Electrochim. Acta 2007, 53, 811-822 10.1016/j.electacta.2007.07.061
-
(2007)
Electrochim. Acta
, vol.53
, pp. 811-822
-
-
Maillard, F.1
Bonnefont, A.2
Chatenet, M.3
Guétaz, L.4
Doisneau-Cottignies, B.5
Roussel, H.6
Stimming, U.7
-
45
-
-
84877715039
-
4 Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction
-
4 Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction Int. J. Hydrogen Energy 2013, 38, 6657-6662 10.1016/j.ijhydene.2013.03.092
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 6657-6662
-
-
Liu, Z.-Q.1
Xu, Q.-Z.2
Wang, J.-Y.3
Li, N.4
Guo, S.-H.5
Su, Y.-Z.6
Wang, H.-J.7
Zhang, J.-H.8
Chen, S.9
-
46
-
-
47249159849
-
4 Used as Bifunctional Electrocatalyst in Alkaline Medium
-
4 Used as Bifunctional Electrocatalyst in Alkaline Medium Electrochim. Acta 2008, 53, 7012-7021 10.1016/j.electacta.2008.02.002
-
(2008)
Electrochim. Acta
, vol.53
, pp. 7012-7021
-
-
De Koninck, M.1
Marsan, B.2
-
47
-
-
84942673530
-
4 Tubular Hybrids as Superior Anode Materials for Oxygen Evolution Reaction
-
4 Tubular Hybrids as Superior Anode Materials for Oxygen Evolution Reaction J. Power Sources 2015, 300, 285-293 10.1016/j.jpowsour.2015.09.049
-
(2015)
J. Power Sources
, vol.300
, pp. 285-293
-
-
Fang, Y.1
Li, X.2
Hu, Y.3
Li, F.4
Lin, X.5
Tian, M.6
An, X.7
Fu, Y.8
Jin, J.9
Ma, J.10
-
49
-
-
84870380768
-
2 Thin Films on Their Electrochemical Properties
-
2 Thin Films on Their Electrochemical Properties Electrochim. Acta 2013, 88, 79-85 10.1016/j.electacta.2012.10.009
-
(2013)
Electrochim. Acta
, vol.88
, pp. 79-85
-
-
Chen, T.1
Huang, H.2
Ma, H.3
Kong, D.4
-
50
-
-
69249104648
-
Exploring the Use of Electrochemical Impedance Spectroscopy (EIS) in Microbial Fuel Cell Studies
-
He, Z.; Mansfeld, F. Exploring the Use of Electrochemical Impedance Spectroscopy (EIS) in Microbial Fuel Cell Studies Energy Environ. Sci. 2009, 2, 215-219 10.1039/B814914C
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 215-219
-
-
He, Z.1
Mansfeld, F.2
-
51
-
-
78650315027
-
Rapid Room-Temperature Synthesis of Nanocrystalline Spinels as Oxygen Reduction and Evolution Electrocatalysts
-
Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J. Rapid Room-Temperature Synthesis of Nanocrystalline Spinels as Oxygen Reduction and Evolution Electrocatalysts Nat. Chem. 2011, 3, 79-84 10.1038/nchem.931
-
(2011)
Nat. Chem.
, vol.3
, pp. 79-84
-
-
Cheng, F.1
Shen, J.2
Peng, B.3
Pan, Y.4
Tao, Z.5
Chen, J.6
-
52
-
-
84885150712
-
Electrocatalytic Activity and Stability of Co and Mn-Based Oxides for the Oxygen Reduction Reaction in Alkaline Electrolyte
-
Queiroz, A.; Lima, F. Electrocatalytic Activity and Stability of Co and Mn-Based Oxides for the Oxygen Reduction Reaction in Alkaline Electrolyte J. Electroanal. Chem. 2013, 707, 142-150 10.1016/j.jelechem.2013.08.039
-
(2013)
J. Electroanal. Chem.
, vol.707
, pp. 142-150
-
-
Queiroz, A.1
Lima, F.2
-
53
-
-
84878726860
-
4 Nanocomposites as a Synergistic Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions
-
4 Nanocomposites as a Synergistic Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions Nanoscale 2013, 5, 5312-5315 10.1039/c3nr00444a
-
(2013)
Nanoscale
, vol.5
, pp. 5312-5315
-
-
Wang, D.1
Chen, X.2
Evans, D.G.3
Yang, W.4
-
54
-
-
84925363981
-
Facet-Dependent Catalytic Activity of MnO Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions
-
Kuo, C.-H.; Mosa, I. M.; Thanneeru, S.; Sharma, V.; Zhang, L.; Biswas, S.; Aindow, M.; Pamir Alpay, S.; Rusling, J. F.; Suib, S. L. et al. Facet-Dependent Catalytic Activity of MnO Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions Chem. Commun. 2015, 51, 5951-5954 10.1039/C5CC01152C
-
(2015)
Chem. Commun.
, vol.51
, pp. 5951-5954
-
-
Kuo, C.-H.1
Mosa, I.M.2
Thanneeru, S.3
Sharma, V.4
Zhang, L.5
Biswas, S.6
Aindow, M.7
Pamir Alpay, S.8
Rusling, J.F.9
Suib, S.L.10
-
56
-
-
84887680701
-
Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
-
McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction J. Am. Chem. Soc. 2013, 135, 16977-16987 10.1021/ja407115p
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 16977-16987
-
-
McCrory, C.C.1
Jung, S.2
Peters, J.C.3
Jaramillo, T.F.4
-
58
-
-
79953711739
-
Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen
-
Yeo, B. S.; Bell, A. T. Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen J. Am. Chem. Soc. 2011, 133, 5587-5593 10.1021/ja200559j
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 5587-5593
-
-
Yeo, B.S.1
Bell, A.T.2
-
59
-
-
84862817046
-
2 Composite Anode in Sulfuric Acid Solution-Tafel and EIS Investigations
-
2 Composite Anode in Sulfuric Acid Solution-Tafel and EIS Investigations J. Electroanal. Chem. 2012, 671, 16-23 10.1016/j.jelechem.2012.02.011
-
(2012)
J. Electroanal. Chem.
, vol.671
, pp. 16-23
-
-
Lai, Y.1
Li, Y.2
Jiang, L.3
Xu, W.4
Lv, X.5
Li, J.6
Liu, Y.7
-
60
-
-
84874249184
-
2 with Vacancies
-
2 with Vacancies Angew. Chem., Int. Ed. 2013, 52, 2474-2477 10.1002/anie.201208582
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 2474-2477
-
-
Cheng, F.1
Zhang, T.2
Zhang, Y.3
Du, J.4
Han, X.5
Chen, J.6
-
61
-
-
84901280560
-
4 with Abundant Oxygen Vacancy Defects as High-Performance Oxygen Reduction Catalysts
-
4 with Abundant Oxygen Vacancy Defects as High-Performance Oxygen Reduction Catalysts J. Mater. Chem. A 2014, 2, 8676-8682 10.1039/C4TA01672F
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8676-8682
-
-
Ma, T.Y.1
Zheng, Y.2
Dai, S.3
Jaroniec, M.4
Qiao, S.Z.5
|