-
1
-
-
84988044805
-
The energetics of genome complexity
-
Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467: 929–34.
-
(2010)
Nature
, vol.467
, pp. 929-934
-
-
Lane, N.1
Martin, W.2
-
2
-
-
84862556334
-
Biochemistry and evolution of anaerobic energy metabolism in eukaryotes
-
Müller M, Mentel M, van Hellemond JJ, Henze K, et al. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76: 444–95.
-
(2012)
Microbiol Mol Biol Rev
, vol.76
, pp. 444-495
-
-
Müller, M.1
Mentel, M.2
van Hellemond, J.J.3
Henze, K.4
-
3
-
-
84959463045
-
Mitochondria-judges and executioners of cell death sentences
-
Bhola PD, Letai A. 2016. Mitochondria-judges and executioners of cell death sentences. Mol Cell 61: 695–704.
-
(2016)
Mol Cell
, vol.61
, pp. 695-704
-
-
Bhola, P.D.1
Letai, A.2
-
4
-
-
17144404877
-
Comparative genomics, evolution, and origins of the nuclear envelope and nuclear pore complex
-
Mans BJ, Anantharaman V, Aravind L, Koonin EV. 2004. Comparative genomics, evolution, and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3: 1612–37.
-
(2004)
Cell Cycle
, vol.3
, pp. 1612-1637
-
-
Mans, B.J.1
Anantharaman, V.2
Aravind, L.3
Koonin, E.V.4
-
5
-
-
84962124150
-
Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system
-
Gould SB, Garg SG, Martin WF. 2016. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24: 525–34.
-
(2016)
Trends Microbiol
, vol.24
, pp. 525-534
-
-
Gould, S.B.1
Garg, S.G.2
Martin, W.F.3
-
6
-
-
84940488362
-
Endosymbiotic origin and differential loss of eukaryotic genes
-
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, et al. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524: 427–32.
-
(2015)
Nature
, vol.524
, pp. 427-432
-
-
Ku, C.1
Nelson-Sathi, S.2
Roettger, M.3
Sousa, F.L.4
-
7
-
-
0025300402
-
Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya
-
Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87: 4576–9.
-
(1990)
Proc Natl Acad Sci USA
, vol.87
, pp. 4576-4579
-
-
Woese, C.R.1
Kandler, O.2
Wheelis, M.L.3
-
8
-
-
84890355580
-
An archaeal origin of eukaryotes supports only two primary domains of life
-
Williams TA, Foster PG, Cox CJ, Embley TM. 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504: 231–6.
-
(2013)
Nature
, vol.504
, pp. 231-236
-
-
Williams, T.A.1
Foster, P.G.2
Cox, C.J.3
Embley, T.M.4
-
10
-
-
84944739223
-
Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics
-
Evans PN, Parks DH, Chadwick GL, Robbins SJ, et al. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350: 434–8.
-
(2015)
Science
, vol.350
, pp. 434-438
-
-
Evans, P.N.1
Parks, D.H.2
Chadwick, G.L.3
Robbins, S.J.4
-
11
-
-
84929329445
-
Complex archaea that bridge the gap between prokaryotes and eukaryotes
-
Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173–9.
-
(2015)
Nature
, vol.521
, pp. 173-179
-
-
Spang, A.1
Saw, J.H.2
Jørgensen, S.L.3
Zaremba-Niedzwiedzka, K.4
-
12
-
-
84967073631
-
Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments
-
He Y, Li M, Perumal V, Feng X, et al. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1: 16035.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16035
-
-
He, Y.1
Li, M.2
Perumal, V.3
Feng, X.4
-
13
-
-
84867638141
-
Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge
-
Jørgensen SL, Hannisdal B, Lanzén A, Baumberger T, et al. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA 109: E2846–55.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2846-E2855
-
-
Jørgensen, S.L.1
Hannisdal, B.2
Lanzén, A.3
Baumberger, T.4
-
14
-
-
84885399253
-
Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge
-
Jørgensen SL, Thorseth IH, Pedersen RB, Baumberger T, et al. 2013. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 4: 299.
-
(2013)
Front Microbiol
, vol.4
, pp. 299
-
-
Jørgensen, S.L.1
Thorseth, I.H.2
Pedersen, R.B.3
Baumberger, T.4
-
15
-
-
0023665552
-
Eukaryotes with no mitochondria
-
Cavalier-Smith T. 1987. Eukaryotes with no mitochondria. Nature 326: 332–3.
-
(1987)
Nature
, vol.326
, pp. 332-333
-
-
Cavalier-Smith, T.1
-
17
-
-
0032404453
-
You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes
-
Doolittle WF. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14: 307–11.
-
(1998)
Trends Genet
, vol.14
, pp. 307-311
-
-
Doolittle, W.F.1
-
19
-
-
33645456207
-
Eukaryotic evolution, changes, and challenges
-
Embley TM, Martin W. 2006. Eukaryotic evolution, changes, and challenges. Nature 440: 623–30.
-
(2006)
Nature
, vol.440
, pp. 623-630
-
-
Embley, T.M.1
Martin, W.2
-
20
-
-
10344254308
-
Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I
-
Hrdy I, Hirt RP, Dolezal P, Bardonová L, et al. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432: 618–22.
-
(2004)
Nature
, vol.432
, pp. 618-622
-
-
Hrdy, I.1
Hirt, R.P.2
Dolezal, P.3
Bardonová, L.4
-
21
-
-
0037158721
-
A mitochondrial remnant in the microsporidian Trachipleistophora hominis
-
Williams BA, Hirt RP, Lucocq JM, Embley TM. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865–9.
-
(2002)
Nature
, vol.418
, pp. 865-869
-
-
Williams, B.A.1
Hirt, R.P.2
Lucocq, J.M.3
Embley, T.M.4
-
22
-
-
0032988857
-
The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica
-
Tovar J, Fischer A, Clark CG. 1999. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32: 1013–21.
-
(1999)
Mol Microbiol
, vol.32
, pp. 1013-1021
-
-
Tovar, J.1
Fischer, A.2
Clark, C.G.3
-
23
-
-
0344633597
-
Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation
-
Tovar J, León-Avila G, Sánchez LB, Sutak R, et al. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–6.
-
(2003)
Nature
, vol.426
, pp. 172-176
-
-
Tovar, J.1
León-Avila, G.2
Sánchez, L.B.3
Sutak, R.4
-
24
-
-
41649116646
-
Localization and functionality of microsporidian iron-sulphur cluster assembly proteins
-
Goldberg AV, Molik S, Tsaousis AD, Neumann K, et al. 2008. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624–8.
-
(2008)
Nature
, vol.452
, pp. 624-628
-
-
Goldberg, A.V.1
Molik, S.2
Tsaousis, A.D.3
Neumann, K.4
-
26
-
-
84873164495
-
From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell
-
Martijn J, Ettema TJG. 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41: 451–7.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 451-457
-
-
Martijn, J.1
Ettema, T.J.G.2
-
27
-
-
84940704092
-
Origin of eukaryotes from within archaea, archaeal eukaryome, and bursts of gene gain: eukaryogenesis just made easier
-
Koonin EV. 2015. Origin of eukaryotes from within archaea, archaeal eukaryome, and bursts of gene gain: eukaryogenesis just made easier? Phil Trans R Soc B 370: 20140333.
-
(2015)
Phil Trans R Soc B
, vol.370
, pp. 20140333
-
-
Koonin, E.V.1
-
28
-
-
84945961089
-
Open questions on the origin of Eukaryotes
-
López-García P, Moreira D. 2015. Open questions on the origin of Eukaryotes. Trends Ecol Evol 30: 697–708.
-
(2015)
Trends Ecol Evol
, vol.30
, pp. 697-708
-
-
López-García, P.1
Moreira, D.2
-
29
-
-
84954517726
-
A comparison of autogenous theories for the origin of eukaryotic cells
-
Baum DA. 2015. A comparison of autogenous theories for the origin of eukaryotic cells. Am J Bot 102: 1954–65.
-
(2015)
Am J Bot
, vol.102
, pp. 1954-1965
-
-
Baum, D.A.1
-
31
-
-
84983375314
-
Lokiarchaeon is hydrogen dependent
-
Sousa FL, Neukirchen S, Allen JF, Lane N, et al. 2016. Lokiarchaeon is hydrogen dependent. Nat Microbiol 1: 16034.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16034
-
-
Sousa, F.L.1
Neukirchen, S.2
Allen, J.F.3
Lane, N.4
-
32
-
-
2642689666
-
The hydrogen hypothesis for the first eukaryote
-
Martin W, Müller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.
-
(1998)
Nature
, vol.392
, pp. 37-41
-
-
Martin, W.1
Müller, M.2
-
33
-
-
0030871461
-
Energetics of syntrophic cooperation in methanogenic degradation
-
Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61: 262–80.
-
(1997)
Microbiol Mol Biol Rev
, vol.61
, pp. 262-280
-
-
Schink, B.1
-
35
-
-
33644783626
-
Introns and the origin of nucleus-cytosol compartmentalization
-
Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41–5.
-
(2006)
Nature
, vol.440
, pp. 41-45
-
-
Martin, W.1
Koonin, E.V.2
-
36
-
-
0345299175
-
Metabolic symbiosis at the origin of eukaryotes
-
López-Garcı́a P, Moreira D. 1999. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24: 88–93.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 88-93
-
-
López-Garcı́a, P.1
Moreira, D.2
-
37
-
-
4243069026
-
Syntrophic models for mitochondrial origin
-
In, Seckbach J, ed;, Doordrecht, Kluwer Academic Publishers
-
Searcy DG. 2002. Syntrophic models for mitochondrial origin. In: Seckbach J, ed; Symbiosis: Mechanisms and Model Systems. Doordrecht: Kluwer Academic Publishers. p. 163–83.
-
(2002)
Symbiosis: Mechanisms and Model Systems
, pp. 163-183
-
-
Searcy, D.G.1
-
38
-
-
0016690411
-
The origin of nuclei and of eukaryotic cells
-
Cavalier-Smith T. 1975. The origin of nuclei and of eukaryotic cells. Nature 256: 463–8.
-
(1975)
Nature
, vol.256
, pp. 463-468
-
-
Cavalier-Smith, T.1
-
39
-
-
0002485292
-
The origin and early evolution of the eukaryotic cell
-
In, Carlile MJ, Collins JF, Moseley BEB, eds;, (Symp Soc Gen Microbiol Vol 32)., Cambridge, Cambridge University Press
-
Cavalier-Smith T. 1981. The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins JF, Moseley BEB, eds; Molecular and Cellular Aspects of Microbial Evolution. (Symp Soc Gen Microbiol Vol 32). Cambridge: Cambridge University Press.
-
(1981)
Molecular and Cellular Aspects of Microbial Evolution
-
-
Cavalier-Smith, T.1
-
40
-
-
0036208071
-
The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa
-
Cavalier Smith T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52: 297–354.
-
(2002)
Int J Syst Evol Microbiol
, vol.52
, pp. 297-354
-
-
Cavalier Smith, T.1
-
41
-
-
78751579092
-
Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis
-
Poole AM, Neumann N. 2011. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162: 71–6.
-
(2011)
Res Microbiol
, vol.162
, pp. 71-76
-
-
Poole, A.M.1
Neumann, N.2
-
42
-
-
0029847319
-
Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis
-
Gehrig H, Schussler A, Kluge M. 1996. Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43: 71–81.
-
(1996)
J Mol Evol
, vol.43
, pp. 71-81
-
-
Gehrig, H.1
Schussler, A.2
Kluge, M.3
-
43
-
-
84455170370
-
Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists
-
Frey-Klett P, Burlinson P, Deveau A, Barret M, et al. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75: 583–609.
-
(2011)
Microbiol Mol Biol Rev
, vol.75
, pp. 583-609
-
-
Frey-Klett, P.1
Burlinson, P.2
Deveau, A.3
Barret, M.4
-
45
-
-
0013337538
-
Intracellular bacteria in the blue–green alga Pleurocapsa minor
-
Wujek DE. 1979. Intracellular bacteria in the blue–green alga Pleurocapsa minor. Trans Am Microsc Soc 98: 143–5.
-
(1979)
Trans Am Microsc Soc
, vol.98
, pp. 143-145
-
-
Wujek, D.E.1
-
46
-
-
0035954724
-
Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts
-
von Dohlen CD, Kohler S, Alsop ST, McManus WR. 2001. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412: 433–6.
-
(2001)
Nature
, vol.412
, pp. 433-436
-
-
von Dohlen, C.D.1
Kohler, S.2
Alsop, S.T.3
McManus, W.R.4
-
47
-
-
84937130169
-
Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria
-
Kobialka M, Michalik A, Walczak M, Junkiert L, et al. 2016. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253: 903–12.
-
(2016)
Protoplasma
, vol.253
, pp. 903-912
-
-
Kobialka, M.1
Michalik, A.2
Walczak, M.3
Junkiert, L.4
-
48
-
-
84867310470
-
The revised classification of eukaryotes
-
Adl SM, Simpson AG, Lane CE, Lukeš J, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol 59: 429–93.
-
(2012)
J Eukaryot Microbiol
, vol.59
, pp. 429-493
-
-
Adl, S.M.1
Simpson, A.G.2
Lane, C.E.3
Lukeš, J.4
-
50
-
-
65849420352
-
Hydrogenosomes and mitosomes: conservation and evolution of functions
-
van der Giezen M. 2009. Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56: 221–31.
-
(2009)
J Eukaryot Microbiol
, vol.56
, pp. 221-231
-
-
van der Giezen, M.1
-
52
-
-
84973352485
-
Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks
-
Klinger CM, Spang A, Dacks JB, Ettema TJG. 2016. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 33: 1528–41.
-
(2016)
Mol Biol Evol
, vol.33
, pp. 1528-1541
-
-
Klinger, C.M.1
Spang, A.2
Dacks, J.B.3
Ettema, T.J.G.4
-
53
-
-
84863838790
-
Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life
-
Deatherage BL, Cookson BT. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80: 1948–57.
-
(2012)
Infect Immun
, vol.80
, pp. 1948-1957
-
-
Deatherage, B.L.1
Cookson, B.T.2
-
54
-
-
84967255505
-
Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the “lipid divide
-
Villanueva L, Schouten S, Sinninghe Damsté JS. 2016. Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the “lipid divide.” Environ Microbiol DOI: 10.1111/1462-2920.13361
-
(2016)
Environ Microbiol
-
-
Villanueva, L.1
Schouten, S.2
Sinninghe Damsté, J.S.3
-
55
-
-
80053913506
-
The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota
-
Siebers B, Zaparty M, Raddatz G, Tjaden B, et al. 2011. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS ONE 6: e24222.
-
(2011)
PLoS ONE
, vol.6
-
-
Siebers, B.1
Zaparty, M.2
Raddatz, G.3
Tjaden, B.4
-
57
-
-
80053227684
-
Alternative pathways of carbon dioxide fixation: insights into the early evolution of life
-
Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65: 631–58.
-
(2011)
Annu Rev Microbiol
, vol.65
, pp. 631-658
-
-
Fuchs, G.1
-
58
-
-
47549119041
-
Methanogenic archaea: ecologically relevant differences in energy conservation
-
Thauer RK, Kaster AK, Seedorf H, Buckel W, et al. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev Microbiol 6: 579–91.
-
(2008)
Nature Rev Microbiol
, vol.6
, pp. 579-591
-
-
Thauer, R.K.1
Kaster, A.K.2
Seedorf, H.3
Buckel, W.4
-
60
-
-
84901837899
-
Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism
-
Sousa FL, Martin WF. 2014. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim Biophys Acta 1837: 964–81.
-
(2014)
Biochim Biophys Acta
, vol.1837
, pp. 964-981
-
-
Sousa, F.L.1
Martin, W.F.2
-
61
-
-
84862815590
-
Methanogens: a window into ancient sulfur metabolism
-
Liu Y, Beer LL, Whitman WB. 2012. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20: 251–8.
-
(2012)
Trends Microbiol
, vol.20
, pp. 251-258
-
-
Liu, Y.1
Beer, L.L.2
Whitman, W.B.3
-
62
-
-
0035158352
-
Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyper-thermophilic archaeon Pyrococcus furiosus
-
Adams MW, Holden JF, Menon AL, Schut GJ, et al. 2001. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyper-thermophilic archaeon Pyrococcus furiosus. J Bacteriol 183: 716–24.
-
(2001)
J Bacteriol
, vol.183
, pp. 716-724
-
-
Adams, M.W.1
Holden, J.F.2
Menon, A.L.3
Schut, G.J.4
-
63
-
-
84873290195
-
The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications
-
Schut GJ, Boyd ES, Peters JW, Adams MW. 2013. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37: 182–203.
-
(2013)
FEMS Microbiol Rev
, vol.37
, pp. 182-203
-
-
Schut, G.J.1
Boyd, E.S.2
Peters, J.W.3
Adams, M.W.4
-
65
-
-
10044290566
-
Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon
-
Rother M, Metcalf WW. 2004. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101: 16929–34.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 16929-16934
-
-
Rother, M.1
Metcalf, W.W.2
-
66
-
-
84951304663
-
Complete nitrification by a single microorganism
-
van Kessel MA, Speth DR, Albertsen M, Nielsen PH, et al. 2015. Complete nitrification by a single microorganism. Nature 528: 555–9.
-
(2015)
Nature
, vol.528
, pp. 555-559
-
-
van Kessel, M.A.1
Speth, D.R.2
Albertsen, M.3
Nielsen, P.H.4
-
67
-
-
34548079773
-
Evolution of cross-feeding in microbial populations
-
Pfeiffer T, Bonhoeffer S. 2004. Evolution of cross-feeding in microbial populations. Am Nat 163: E126–35.
-
(2004)
Am Nat
, vol.163
, pp. E126-E135
-
-
Pfeiffer, T.1
Bonhoeffer, S.2
-
68
-
-
33646495327
-
Why is metabolic labour divided in nitrification
-
Costa E, Pérez J, Kreft JU. 2006. Why is metabolic labour divided in nitrification? Trends Microbiol 14: 213–9.
-
(2006)
Trends Microbiol
, vol.14
, pp. 213-219
-
-
Costa, E.1
Pérez, J.2
Kreft, J.U.3
-
69
-
-
72149118443
-
Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field
-
Lang SQ, Butterfield DA, Schulte M, DS Kelley, et al. 2010. Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Ac 74: 941–52.
-
(2010)
Geochim Cosmochim Ac
, vol.74
, pp. 941-952
-
-
Lang, S.Q.1
Butterfield, D.A.2
Schulte, M.3
Kelley, D.S.4
-
70
-
-
84911440829
-
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
-
Schuchmann K, Müller V. 2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809–21.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 809-821
-
-
Schuchmann, K.1
Müller, V.2
-
71
-
-
18244365346
-
Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum
-
Hattori S, Galushko AS, Kamagata Y, Schink B. 2005. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187: 3471–6.
-
(2005)
J Bacteriol
, vol.187
, pp. 3471-3476
-
-
Hattori, S.1
Galushko, A.S.2
Kamagata, Y.3
Schink, B.4
-
72
-
-
84872654948
-
Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum
-
Oehler D, Poehlein A, Leimbach A, Müller N, et al. 2012. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13: 723.
-
(2012)
BMC Genomics
, vol.13
, pp. 723
-
-
Oehler, D.1
Poehlein, A.2
Leimbach, A.3
Müller, N.4
-
73
-
-
0017343370
-
Energy-conservation in chemotrophic anaerobic bacteria
-
Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–80.
-
(1977)
Bacteriol Rev
, vol.41
, pp. 100-180
-
-
Thauer, R.K.1
Jungermann, K.2
Decker, K.3
-
74
-
-
84868320844
-
Acetogenesis in the energy-starved deep biosphere – a paradox
-
Lever MA. 2012. Acetogenesis in the energy-starved deep biosphere – a paradox? Front Microbiol 2: 284.
-
(2012)
Front Microbiol
, vol.2
, pp. 284
-
-
Lever, M.A.1
-
75
-
-
33646360208
-
Selective forces for the origin of the eukaryotic nucleus
-
López-García P, Moreira D. 2006. Selective forces for the origin of the eukaryotic nucleus. Bioessays 28: 525–33.
-
(2006)
Bioessays
, vol.28
, pp. 525-533
-
-
López-García, P.1
Moreira, D.2
-
76
-
-
84944755142
-
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
-
Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, et al. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526: 587–90.
-
(2015)
Nature
, vol.526
, pp. 587-590
-
-
Wegener, G.1
Krukenberg, V.2
Riedel, D.3
Tegetmeyer, H.E.4
-
77
-
-
84945289920
-
Single cell activity reveals direct electron transfer in methanotrophic consortia
-
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526: 531–5.
-
(2015)
Nature
, vol.526
, pp. 531-535
-
-
McGlynn, S.E.1
Chadwick, G.L.2
Kempes, C.P.3
Orphan, V.J.4
-
78
-
-
85136768979
-
On the origin of biochemistry at an alkaline hydrothermal vent
-
Martin W, Russell MJ. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans Roy Soc Lond B 367: 1187–925.
-
(2007)
Phil Trans Roy Soc Lond B
, vol.367
, pp. 1187-1925
-
-
Martin, W.1
Russell, M.J.2
|