메뉴 건너뛰기




Volumn 38, Issue 9, 2016, Pages 850-856

Energy for two: New archaeal lineages and the origin of mitochondria

Author keywords

acetogenesis; Bathyarchaeota; endosymbiosis; eukaryotic origin; Lokiarchaeum; mitochondria

Indexed keywords

HYDROGEN;

EID: 84983447239     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600089     Document Type: Article
Times cited : (32)

References (79)
  • 1
    • 84988044805 scopus 로고    scopus 로고
    • The energetics of genome complexity
    • Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467: 929–34.
    • (2010) Nature , vol.467 , pp. 929-934
    • Lane, N.1    Martin, W.2
  • 2
    • 84862556334 scopus 로고    scopus 로고
    • Biochemistry and evolution of anaerobic energy metabolism in eukaryotes
    • Müller M, Mentel M, van Hellemond JJ, Henze K, et al. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76: 444–95.
    • (2012) Microbiol Mol Biol Rev , vol.76 , pp. 444-495
    • Müller, M.1    Mentel, M.2    van Hellemond, J.J.3    Henze, K.4
  • 3
    • 84959463045 scopus 로고    scopus 로고
    • Mitochondria-judges and executioners of cell death sentences
    • Bhola PD, Letai A. 2016. Mitochondria-judges and executioners of cell death sentences. Mol Cell 61: 695–704.
    • (2016) Mol Cell , vol.61 , pp. 695-704
    • Bhola, P.D.1    Letai, A.2
  • 4
    • 17144404877 scopus 로고    scopus 로고
    • Comparative genomics, evolution, and origins of the nuclear envelope and nuclear pore complex
    • Mans BJ, Anantharaman V, Aravind L, Koonin EV. 2004. Comparative genomics, evolution, and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3: 1612–37.
    • (2004) Cell Cycle , vol.3 , pp. 1612-1637
    • Mans, B.J.1    Anantharaman, V.2    Aravind, L.3    Koonin, E.V.4
  • 5
    • 84962124150 scopus 로고    scopus 로고
    • Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system
    • Gould SB, Garg SG, Martin WF. 2016. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24: 525–34.
    • (2016) Trends Microbiol , vol.24 , pp. 525-534
    • Gould, S.B.1    Garg, S.G.2    Martin, W.F.3
  • 6
    • 84940488362 scopus 로고    scopus 로고
    • Endosymbiotic origin and differential loss of eukaryotic genes
    • Ku C, Nelson-Sathi S, Roettger M, Sousa FL, et al. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524: 427–32.
    • (2015) Nature , vol.524 , pp. 427-432
    • Ku, C.1    Nelson-Sathi, S.2    Roettger, M.3    Sousa, F.L.4
  • 7
    • 0025300402 scopus 로고
    • Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya
    • Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87: 4576–9.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 4576-4579
    • Woese, C.R.1    Kandler, O.2    Wheelis, M.L.3
  • 8
    • 84890355580 scopus 로고    scopus 로고
    • An archaeal origin of eukaryotes supports only two primary domains of life
    • Williams TA, Foster PG, Cox CJ, Embley TM. 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504: 231–6.
    • (2013) Nature , vol.504 , pp. 231-236
    • Williams, T.A.1    Foster, P.G.2    Cox, C.J.3    Embley, T.M.4
  • 9
    • 84930226613 scopus 로고    scopus 로고
    • The two-domain tree of life is linked to a new root for the archaea
    • Raymann K, Brochier-Armanet C, Gribaldo S. 2015. The two-domain tree of life is linked to a new root for the archaea. Proc Natl Acad Sci USA 112: 6670–5.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 6670-6675
    • Raymann, K.1    Brochier-Armanet, C.2    Gribaldo, S.3
  • 10
    • 84944739223 scopus 로고    scopus 로고
    • Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics
    • Evans PN, Parks DH, Chadwick GL, Robbins SJ, et al. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350: 434–8.
    • (2015) Science , vol.350 , pp. 434-438
    • Evans, P.N.1    Parks, D.H.2    Chadwick, G.L.3    Robbins, S.J.4
  • 11
    • 84929329445 scopus 로고    scopus 로고
    • Complex archaea that bridge the gap between prokaryotes and eukaryotes
    • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173–9.
    • (2015) Nature , vol.521 , pp. 173-179
    • Spang, A.1    Saw, J.H.2    Jørgensen, S.L.3    Zaremba-Niedzwiedzka, K.4
  • 12
    • 84967073631 scopus 로고    scopus 로고
    • Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments
    • He Y, Li M, Perumal V, Feng X, et al. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1: 16035.
    • (2016) Nat Microbiol , vol.1 , pp. 16035
    • He, Y.1    Li, M.2    Perumal, V.3    Feng, X.4
  • 13
    • 84867638141 scopus 로고    scopus 로고
    • Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge
    • Jørgensen SL, Hannisdal B, Lanzén A, Baumberger T, et al. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA 109: E2846–55.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E2846-E2855
    • Jørgensen, S.L.1    Hannisdal, B.2    Lanzén, A.3    Baumberger, T.4
  • 14
    • 84885399253 scopus 로고    scopus 로고
    • Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge
    • Jørgensen SL, Thorseth IH, Pedersen RB, Baumberger T, et al. 2013. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 4: 299.
    • (2013) Front Microbiol , vol.4 , pp. 299
    • Jørgensen, S.L.1    Thorseth, I.H.2    Pedersen, R.B.3    Baumberger, T.4
  • 15
    • 0023665552 scopus 로고
    • Eukaryotes with no mitochondria
    • Cavalier-Smith T. 1987. Eukaryotes with no mitochondria. Nature 326: 332–3.
    • (1987) Nature , vol.326 , pp. 332-333
    • Cavalier-Smith, T.1
  • 16
    • 0034443285 scopus 로고    scopus 로고
    • Origin and evolution of the mitochondrial proteome
    • Kurland CG, Andersson SGE. 2000. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64: 786–820.
    • (2000) Microbiol Mol Biol Rev , vol.64 , pp. 786-820
    • Kurland, C.G.1    Andersson, S.G.E.2
  • 17
    • 0032404453 scopus 로고    scopus 로고
    • You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes
    • Doolittle WF. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14: 307–11.
    • (1998) Trends Genet , vol.14 , pp. 307-311
    • Doolittle, W.F.1
  • 19
    • 33645456207 scopus 로고    scopus 로고
    • Eukaryotic evolution, changes, and challenges
    • Embley TM, Martin W. 2006. Eukaryotic evolution, changes, and challenges. Nature 440: 623–30.
    • (2006) Nature , vol.440 , pp. 623-630
    • Embley, T.M.1    Martin, W.2
  • 20
    • 10344254308 scopus 로고    scopus 로고
    • Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I
    • Hrdy I, Hirt RP, Dolezal P, Bardonová L, et al. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432: 618–22.
    • (2004) Nature , vol.432 , pp. 618-622
    • Hrdy, I.1    Hirt, R.P.2    Dolezal, P.3    Bardonová, L.4
  • 21
    • 0037158721 scopus 로고    scopus 로고
    • A mitochondrial remnant in the microsporidian Trachipleistophora hominis
    • Williams BA, Hirt RP, Lucocq JM, Embley TM. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865–9.
    • (2002) Nature , vol.418 , pp. 865-869
    • Williams, B.A.1    Hirt, R.P.2    Lucocq, J.M.3    Embley, T.M.4
  • 22
    • 0032988857 scopus 로고    scopus 로고
    • The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica
    • Tovar J, Fischer A, Clark CG. 1999. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32: 1013–21.
    • (1999) Mol Microbiol , vol.32 , pp. 1013-1021
    • Tovar, J.1    Fischer, A.2    Clark, C.G.3
  • 23
    • 0344633597 scopus 로고    scopus 로고
    • Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation
    • Tovar J, León-Avila G, Sánchez LB, Sutak R, et al. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–6.
    • (2003) Nature , vol.426 , pp. 172-176
    • Tovar, J.1    León-Avila, G.2    Sánchez, L.B.3    Sutak, R.4
  • 24
    • 41649116646 scopus 로고    scopus 로고
    • Localization and functionality of microsporidian iron-sulphur cluster assembly proteins
    • Goldberg AV, Molik S, Tsaousis AD, Neumann K, et al. 2008. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624–8.
    • (2008) Nature , vol.452 , pp. 624-628
    • Goldberg, A.V.1    Molik, S.2    Tsaousis, A.D.3    Neumann, K.4
  • 25
  • 26
    • 84873164495 scopus 로고    scopus 로고
    • From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell
    • Martijn J, Ettema TJG. 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41: 451–7.
    • (2013) Biochem Soc Trans , vol.41 , pp. 451-457
    • Martijn, J.1    Ettema, T.J.G.2
  • 27
    • 84940704092 scopus 로고    scopus 로고
    • Origin of eukaryotes from within archaea, archaeal eukaryome, and bursts of gene gain: eukaryogenesis just made easier
    • Koonin EV. 2015. Origin of eukaryotes from within archaea, archaeal eukaryome, and bursts of gene gain: eukaryogenesis just made easier? Phil Trans R Soc B 370: 20140333.
    • (2015) Phil Trans R Soc B , vol.370 , pp. 20140333
    • Koonin, E.V.1
  • 28
    • 84945961089 scopus 로고    scopus 로고
    • Open questions on the origin of Eukaryotes
    • López-García P, Moreira D. 2015. Open questions on the origin of Eukaryotes. Trends Ecol Evol 30: 697–708.
    • (2015) Trends Ecol Evol , vol.30 , pp. 697-708
    • López-García, P.1    Moreira, D.2
  • 29
    • 84954517726 scopus 로고    scopus 로고
    • A comparison of autogenous theories for the origin of eukaryotic cells
    • Baum DA. 2015. A comparison of autogenous theories for the origin of eukaryotic cells. Am J Bot 102: 1954–65.
    • (2015) Am J Bot , vol.102 , pp. 1954-1965
    • Baum, D.A.1
  • 32
    • 2642689666 scopus 로고    scopus 로고
    • The hydrogen hypothesis for the first eukaryote
    • Martin W, Müller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.
    • (1998) Nature , vol.392 , pp. 37-41
    • Martin, W.1    Müller, M.2
  • 33
    • 0030871461 scopus 로고    scopus 로고
    • Energetics of syntrophic cooperation in methanogenic degradation
    • Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61: 262–80.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 262-280
    • Schink, B.1
  • 35
    • 33644783626 scopus 로고    scopus 로고
    • Introns and the origin of nucleus-cytosol compartmentalization
    • Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41–5.
    • (2006) Nature , vol.440 , pp. 41-45
    • Martin, W.1    Koonin, E.V.2
  • 36
    • 0345299175 scopus 로고    scopus 로고
    • Metabolic symbiosis at the origin of eukaryotes
    • López-Garcı́a P, Moreira D. 1999. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24: 88–93.
    • (1999) Trends Biochem Sci , vol.24 , pp. 88-93
    • López-Garcı́a, P.1    Moreira, D.2
  • 37
    • 4243069026 scopus 로고    scopus 로고
    • Syntrophic models for mitochondrial origin
    • In, Seckbach J, ed;, Doordrecht, Kluwer Academic Publishers
    • Searcy DG. 2002. Syntrophic models for mitochondrial origin. In: Seckbach J, ed; Symbiosis: Mechanisms and Model Systems. Doordrecht: Kluwer Academic Publishers. p. 163–83.
    • (2002) Symbiosis: Mechanisms and Model Systems , pp. 163-183
    • Searcy, D.G.1
  • 38
    • 0016690411 scopus 로고
    • The origin of nuclei and of eukaryotic cells
    • Cavalier-Smith T. 1975. The origin of nuclei and of eukaryotic cells. Nature 256: 463–8.
    • (1975) Nature , vol.256 , pp. 463-468
    • Cavalier-Smith, T.1
  • 39
    • 0002485292 scopus 로고
    • The origin and early evolution of the eukaryotic cell
    • In, Carlile MJ, Collins JF, Moseley BEB, eds;, (Symp Soc Gen Microbiol Vol 32)., Cambridge, Cambridge University Press
    • Cavalier-Smith T. 1981. The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins JF, Moseley BEB, eds; Molecular and Cellular Aspects of Microbial Evolution. (Symp Soc Gen Microbiol Vol 32). Cambridge: Cambridge University Press.
    • (1981) Molecular and Cellular Aspects of Microbial Evolution
    • Cavalier-Smith, T.1
  • 40
    • 0036208071 scopus 로고    scopus 로고
    • The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa
    • Cavalier Smith T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52: 297–354.
    • (2002) Int J Syst Evol Microbiol , vol.52 , pp. 297-354
    • Cavalier Smith, T.1
  • 41
    • 78751579092 scopus 로고    scopus 로고
    • Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis
    • Poole AM, Neumann N. 2011. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162: 71–6.
    • (2011) Res Microbiol , vol.162 , pp. 71-76
    • Poole, A.M.1    Neumann, N.2
  • 42
    • 0029847319 scopus 로고    scopus 로고
    • Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis
    • Gehrig H, Schussler A, Kluge M. 1996. Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43: 71–81.
    • (1996) J Mol Evol , vol.43 , pp. 71-81
    • Gehrig, H.1    Schussler, A.2    Kluge, M.3
  • 43
    • 84455170370 scopus 로고    scopus 로고
    • Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists
    • Frey-Klett P, Burlinson P, Deveau A, Barret M, et al. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75: 583–609.
    • (2011) Microbiol Mol Biol Rev , vol.75 , pp. 583-609
    • Frey-Klett, P.1    Burlinson, P.2    Deveau, A.3    Barret, M.4
  • 44
    • 84927141805 scopus 로고    scopus 로고
    • Active invasion of bacteria into living fungal cells
    • Moebius N, Uzum Z, Dijksterhuis J, Lackner G, et al. 2014. Active invasion of bacteria into living fungal cells. Elife 3: e03007.
    • (2014) Elife , vol.3
    • Moebius, N.1    Uzum, Z.2    Dijksterhuis, J.3    Lackner, G.4
  • 45
    • 0013337538 scopus 로고
    • Intracellular bacteria in the blue–green alga Pleurocapsa minor
    • Wujek DE. 1979. Intracellular bacteria in the blue–green alga Pleurocapsa minor. Trans Am Microsc Soc 98: 143–5.
    • (1979) Trans Am Microsc Soc , vol.98 , pp. 143-145
    • Wujek, D.E.1
  • 46
    • 0035954724 scopus 로고    scopus 로고
    • Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts
    • von Dohlen CD, Kohler S, Alsop ST, McManus WR. 2001. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412: 433–6.
    • (2001) Nature , vol.412 , pp. 433-436
    • von Dohlen, C.D.1    Kohler, S.2    Alsop, S.T.3    McManus, W.R.4
  • 47
    • 84937130169 scopus 로고    scopus 로고
    • Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria
    • Kobialka M, Michalik A, Walczak M, Junkiert L, et al. 2016. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253: 903–12.
    • (2016) Protoplasma , vol.253 , pp. 903-912
    • Kobialka, M.1    Michalik, A.2    Walczak, M.3    Junkiert, L.4
  • 50
    • 65849420352 scopus 로고    scopus 로고
    • Hydrogenosomes and mitosomes: conservation and evolution of functions
    • van der Giezen M. 2009. Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56: 221–31.
    • (2009) J Eukaryot Microbiol , vol.56 , pp. 221-231
    • van der Giezen, M.1
  • 52
    • 84973352485 scopus 로고    scopus 로고
    • Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks
    • Klinger CM, Spang A, Dacks JB, Ettema TJG. 2016. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 33: 1528–41.
    • (2016) Mol Biol Evol , vol.33 , pp. 1528-1541
    • Klinger, C.M.1    Spang, A.2    Dacks, J.B.3    Ettema, T.J.G.4
  • 53
    • 84863838790 scopus 로고    scopus 로고
    • Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life
    • Deatherage BL, Cookson BT. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80: 1948–57.
    • (2012) Infect Immun , vol.80 , pp. 1948-1957
    • Deatherage, B.L.1    Cookson, B.T.2
  • 54
    • 84967255505 scopus 로고    scopus 로고
    • Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the “lipid divide
    • Villanueva L, Schouten S, Sinninghe Damsté JS. 2016. Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the “lipid divide.” Environ Microbiol DOI: 10.1111/1462-2920.13361
    • (2016) Environ Microbiol
    • Villanueva, L.1    Schouten, S.2    Sinninghe Damsté, J.S.3
  • 55
    • 80053913506 scopus 로고    scopus 로고
    • The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota
    • Siebers B, Zaparty M, Raddatz G, Tjaden B, et al. 2011. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS ONE 6: e24222.
    • (2011) PLoS ONE , vol.6
    • Siebers, B.1    Zaparty, M.2    Raddatz, G.3    Tjaden, B.4
  • 57
    • 80053227684 scopus 로고    scopus 로고
    • Alternative pathways of carbon dioxide fixation: insights into the early evolution of life
    • Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65: 631–58.
    • (2011) Annu Rev Microbiol , vol.65 , pp. 631-658
    • Fuchs, G.1
  • 58
    • 47549119041 scopus 로고    scopus 로고
    • Methanogenic archaea: ecologically relevant differences in energy conservation
    • Thauer RK, Kaster AK, Seedorf H, Buckel W, et al. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev Microbiol 6: 579–91.
    • (2008) Nature Rev Microbiol , vol.6 , pp. 579-591
    • Thauer, R.K.1    Kaster, A.K.2    Seedorf, H.3    Buckel, W.4
  • 60
    • 84901837899 scopus 로고    scopus 로고
    • Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism
    • Sousa FL, Martin WF. 2014. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim Biophys Acta 1837: 964–81.
    • (2014) Biochim Biophys Acta , vol.1837 , pp. 964-981
    • Sousa, F.L.1    Martin, W.F.2
  • 61
    • 84862815590 scopus 로고    scopus 로고
    • Methanogens: a window into ancient sulfur metabolism
    • Liu Y, Beer LL, Whitman WB. 2012. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20: 251–8.
    • (2012) Trends Microbiol , vol.20 , pp. 251-258
    • Liu, Y.1    Beer, L.L.2    Whitman, W.B.3
  • 62
    • 0035158352 scopus 로고    scopus 로고
    • Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyper-thermophilic archaeon Pyrococcus furiosus
    • Adams MW, Holden JF, Menon AL, Schut GJ, et al. 2001. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyper-thermophilic archaeon Pyrococcus furiosus. J Bacteriol 183: 716–24.
    • (2001) J Bacteriol , vol.183 , pp. 716-724
    • Adams, M.W.1    Holden, J.F.2    Menon, A.L.3    Schut, G.J.4
  • 63
    • 84873290195 scopus 로고    scopus 로고
    • The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications
    • Schut GJ, Boyd ES, Peters JW, Adams MW. 2013. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37: 182–203.
    • (2013) FEMS Microbiol Rev , vol.37 , pp. 182-203
    • Schut, G.J.1    Boyd, E.S.2    Peters, J.W.3    Adams, M.W.4
  • 65
    • 10044290566 scopus 로고    scopus 로고
    • Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon
    • Rother M, Metcalf WW. 2004. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101: 16929–34.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 16929-16934
    • Rother, M.1    Metcalf, W.W.2
  • 67
    • 34548079773 scopus 로고    scopus 로고
    • Evolution of cross-feeding in microbial populations
    • Pfeiffer T, Bonhoeffer S. 2004. Evolution of cross-feeding in microbial populations. Am Nat 163: E126–35.
    • (2004) Am Nat , vol.163 , pp. E126-E135
    • Pfeiffer, T.1    Bonhoeffer, S.2
  • 68
    • 33646495327 scopus 로고    scopus 로고
    • Why is metabolic labour divided in nitrification
    • Costa E, Pérez J, Kreft JU. 2006. Why is metabolic labour divided in nitrification? Trends Microbiol 14: 213–9.
    • (2006) Trends Microbiol , vol.14 , pp. 213-219
    • Costa, E.1    Pérez, J.2    Kreft, J.U.3
  • 69
    • 72149118443 scopus 로고    scopus 로고
    • Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field
    • Lang SQ, Butterfield DA, Schulte M, DS Kelley, et al. 2010. Elevated concentrations of formate, acetate, and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Ac 74: 941–52.
    • (2010) Geochim Cosmochim Ac , vol.74 , pp. 941-952
    • Lang, S.Q.1    Butterfield, D.A.2    Schulte, M.3    Kelley, D.S.4
  • 70
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
    • Schuchmann K, Müller V. 2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809–21.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 809-821
    • Schuchmann, K.1    Müller, V.2
  • 71
    • 18244365346 scopus 로고    scopus 로고
    • Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum
    • Hattori S, Galushko AS, Kamagata Y, Schink B. 2005. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187: 3471–6.
    • (2005) J Bacteriol , vol.187 , pp. 3471-3476
    • Hattori, S.1    Galushko, A.S.2    Kamagata, Y.3    Schink, B.4
  • 72
    • 84872654948 scopus 로고    scopus 로고
    • Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum
    • Oehler D, Poehlein A, Leimbach A, Müller N, et al. 2012. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13: 723.
    • (2012) BMC Genomics , vol.13 , pp. 723
    • Oehler, D.1    Poehlein, A.2    Leimbach, A.3    Müller, N.4
  • 73
    • 0017343370 scopus 로고
    • Energy-conservation in chemotrophic anaerobic bacteria
    • Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–80.
    • (1977) Bacteriol Rev , vol.41 , pp. 100-180
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 74
    • 84868320844 scopus 로고    scopus 로고
    • Acetogenesis in the energy-starved deep biosphere – a paradox
    • Lever MA. 2012. Acetogenesis in the energy-starved deep biosphere – a paradox? Front Microbiol 2: 284.
    • (2012) Front Microbiol , vol.2 , pp. 284
    • Lever, M.A.1
  • 75
    • 33646360208 scopus 로고    scopus 로고
    • Selective forces for the origin of the eukaryotic nucleus
    • López-García P, Moreira D. 2006. Selective forces for the origin of the eukaryotic nucleus. Bioessays 28: 525–33.
    • (2006) Bioessays , vol.28 , pp. 525-533
    • López-García, P.1    Moreira, D.2
  • 76
    • 84944755142 scopus 로고    scopus 로고
    • Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
    • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, et al. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526: 587–90.
    • (2015) Nature , vol.526 , pp. 587-590
    • Wegener, G.1    Krukenberg, V.2    Riedel, D.3    Tegetmeyer, H.E.4
  • 77
    • 84945289920 scopus 로고    scopus 로고
    • Single cell activity reveals direct electron transfer in methanotrophic consortia
    • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526: 531–5.
    • (2015) Nature , vol.526 , pp. 531-535
    • McGlynn, S.E.1    Chadwick, G.L.2    Kempes, C.P.3    Orphan, V.J.4
  • 78
    • 85136768979 scopus 로고    scopus 로고
    • On the origin of biochemistry at an alkaline hydrothermal vent
    • Martin W, Russell MJ. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans Roy Soc Lond B 367: 1187–925.
    • (2007) Phil Trans Roy Soc Lond B , vol.367 , pp. 1187-1925
    • Martin, W.1    Russell, M.J.2
  • 79


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.