메뉴 건너뛰기




Volumn 5, Issue 4, 2016, Pages 398-409

Radiomics applied to lung cancer: A review

Author keywords

Imaging; Lung cancer; Radiomics; Theragnostic

Indexed keywords

CANCER CLASSIFICATION; CLINICAL FEATURE; COMPUTER ASSISTED EMISSION TOMOGRAPHY; COMPUTER ASSISTED TOMOGRAPHY; DIAGNOSTIC IMAGING; HUMAN; IMAGE PROCESSING; IMAGE SEGMENTATION; LUNG CANCER; META ANALYSIS (TOPIC); ONCOLOGICAL PARAMETERS; POSITRON EMISSION TOMOGRAPHY; RADIOMICS; REVIEW; TUMOR VOLUME; VALIDATION PROCESS; WORKFLOW;

EID: 84983288387     PISSN: 2218676X     EISSN: 22196803     Source Type: Journal    
DOI: 10.21037/tcr.2016.06.18     Document Type: Review
Times cited : (82)

References (51)
  • 1
    • 84983265346 scopus 로고    scopus 로고
    • Available online: https://cancerstatisticscenter.cancer.org
  • 2
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;48:441-6.
    • (2012) Eur J Cancer , vol.48 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 3
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015;114:345-50.
    • (2015) Radiother Oncol , vol.114 , pp. 345-350
    • Coroller, T.P.1    Grossmann, P.2    Hou, Y.3
  • 4
    • 84908211707 scopus 로고    scopus 로고
    • Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer
    • Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014;90:834-42.
    • (2014) Int J Radiat Oncol Biol Phys , vol.90 , pp. 834-842
    • Fried, D.V.1    Tucker, S.L.2    Zhou, S.3
  • 5
    • 84884579594 scopus 로고    scopus 로고
    • Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer
    • Carvalho S, Leijenaar RT, Velazquez ER, et al. Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol 2013;52:1398-404.
    • (2013) Acta Oncol , vol.52 , pp. 1398-1404
    • Carvalho, S.1    Leijenaar, R.T.2    Velazquez, E.R.3
  • 6
    • 84940869624 scopus 로고    scopus 로고
    • Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of (18)F-FDG Uptake at PET-Association with Treatment Response and Prognosis
    • Cook GJ, O'Brien ME, Siddique M, et al. Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of (18)F-FDG Uptake at PET-Association with Treatment Response and Prognosis. Radiology 2015;276:883-93.
    • (2015) Radiology , vol.276 , pp. 883-893
    • Cook, G.J.1    O'Brien, M.E.2    Siddique, M.3
  • 7
    • 84872015239 scopus 로고    scopus 로고
    • Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
    • Cook GJ, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 2013;54:19-26.
    • (2013) J Nucl Med , vol.54 , pp. 19-26
    • Cook, G.J.1    Yip, C.2    Siddique, M.3
  • 8
    • 84902515123 scopus 로고    scopus 로고
    • Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    • Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images. Transl Oncol 2014;7:72-87.
    • (2014) Transl Oncol , vol.7 , pp. 72-87
    • Balagurunathan, Y.1    Gu, Y.2    Wang, H.3
  • 9
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: the process and the challenges
    • Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234-48.
    • (2012) Magn Reson Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 10
    • 84904264664 scopus 로고    scopus 로고
    • Volumetric CT-based segmentation of NSCLC using 3D-Slicer
    • Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013;3:3529.
    • (2013) Sci Rep , vol.3 , pp. 3529
    • Velazquez, E.R.1    Parmar, C.2    Jermoumi, M.3
  • 11
    • 80455132144 scopus 로고    scopus 로고
    • Impact of tumor size and tracer uptake heterogeneity in (18) F-FDG PET and CT non-small cell lung cancer tumor delineation
    • Hatt M, Cheze-le Rest C, van Baardwijk A, et al. Impact of tumor size and tracer uptake heterogeneity in (18) F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011;52:1690-7.
    • (2011) J Nucl Med , vol.52 , pp. 1690-1697
    • Hatt, M.1    Cheze-le Rest, C.2    van Baardwijk, A.3
  • 12
    • 84904248018 scopus 로고    scopus 로고
    • Robust Radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 2014;9:e102107.
    • (2014) PLoS One , vol.9
    • Parmar, C.1    Rios Velazquez, E.2    Leijenaar, R.3
  • 13
    • 84875336246 scopus 로고    scopus 로고
    • Assessment of tumour size in PET/CT lung cancer studies: PET-and CT-based methods compared to pathology
    • Cheebsumon P, Boellaard R, deRuysscher D, et al. Assessment of tumour size in PET/CT lung cancer studies: PET-and CT-based methods compared to pathology. EJNMMI Res 2012;2:56.
    • (2012) EJNMMI Res , vol.2 , pp. 56
    • Cheebsumon, P.1    Boellaard, R.2    deRuysscher, D.3
  • 14
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the Performance of Prediction Models
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the Performance of Prediction Models. Epidemiology 2010;21:128-38.
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 15
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006.
    • (2014) Nat Commun , vol.5 , pp. 4006
    • Aerts, H.J.1    Velazquez, E.R.2    Leijenaar, R.T.3
  • 16
    • 84964335379 scopus 로고    scopus 로고
    • Radiomic phenotype features predict pathological response in nonsmall cell lung cancer
    • Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in nonsmall cell lung cancer. Radiother Oncol 2016;119:480-6.
    • (2016) Radiother Oncol , vol.119 , pp. 480-486
    • Coroller, T.P.1    Agrawal, V.2    Narayan, V.3
  • 17
    • 84952898501 scopus 로고    scopus 로고
    • Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors
    • Fried DV, Mawlawi O, Zhang L, et al. Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors. Radiology 2016;278:214-22.
    • (2016) Radiology , vol.278 , pp. 214-222
    • Fried, D.V.1    Mawlawi, O.2    Zhang, L.3
  • 18
    • 84975256387 scopus 로고    scopus 로고
    • Development of a nomogram combining clinical staging with F-FDG PET/CT image features in non-small-cell lung cancer stage I-III
    • Desseroit MC, Visvikis D, Tixier F, et al. Development of a nomogram combining clinical staging with F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging 2016;43:1477-85.
    • (2016) Eur J Nucl Med Mol Imaging , vol.43 , pp. 1477-1485
    • Desseroit, M.C.1    Visvikis, D.2    Tixier, F.3
  • 19
    • 84983262746 scopus 로고    scopus 로고
    • Early variation of FDG-PET radiomics features in NSCLC is related to overall survival -the "delta radiomics" concept
    • Carvalho S, Leijenaar RT, Troost EG, et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival -the "delta radiomics" concept. Radiother Oncol 2016;118 Supplement 1:S20-S21.
    • (2016) Radiother Oncol , vol.118 , pp. S20-S21
    • Carvalho, S.1    Leijenaar, R.T.2    Troost, E.G.3
  • 20
    • 84975199794 scopus 로고    scopus 로고
    • FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy
    • Lovinfosse P, Janvary ZL, Coucke P, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging 2016;43:1453-60.
    • (2016) Eur J Nucl Med Mol Imaging , vol.43 , pp. 1453-1460
    • Lovinfosse, P.1    Janvary, Z.L.2    Coucke, P.3
  • 21
    • 84969326691 scopus 로고    scopus 로고
    • Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment
    • Mattonen SA, Palma DA, Johnson C, et al. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment. Int J Radiat Oncol Biol Phys 2016;94:1121-8.
    • (2016) Int J Radiat Oncol Biol Phys , vol.94 , pp. 1121-1128
    • Mattonen, S.A.1    Palma, D.A.2    Johnson, C.3
  • 22
    • 84977940359 scopus 로고    scopus 로고
    • Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy
    • Mattonen SA, Tetar S, Palma DA, et al. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging (Bellingham) 2015;2:041010.
    • (2015) J Med Imaging (Bellingham) , vol.2 , pp. 041010
    • Mattonen, S.A.1    Tetar, S.2    Palma, D.A.3
  • 23
    • 84925348152 scopus 로고    scopus 로고
    • Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
    • Cunliffe A, Armato SG 3rd, Castillo R, et al. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 2015;91:1048-56.
    • (2015) Int J Radiat Oncol Biol Phys , vol.91 , pp. 1048-1056
    • Cunliffe, A.1    Armato, S.G.2    Castillo, R.3
  • 24
    • 84861459453 scopus 로고    scopus 로고
    • Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival
    • Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 2012;22:796-802.
    • (2012) Eur Radiol , vol.22 , pp. 796-802
    • Ganeshan, B.1    Panayiotou, E.2    Burnand, K.3
  • 25
    • 84953302802 scopus 로고    scopus 로고
    • A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images
    • Dhara AK, Mukhopadhyay S, Dutta A, et al. A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J Digit Imaging 2016;29:466-75.
    • (2016) J Digit Imaging , vol.29 , pp. 466-475
    • Dhara, A.K.1    Mukhopadhyay, S.2    Dutta, A.3
  • 26
    • 84983253955 scopus 로고    scopus 로고
    • Improved pulmonary nodule classification utilizing quantitative lung parenchyma features
    • Dilger SK, Uthoff J, Judisch A, et al. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features. J Med Imaging (Bellingham) 2015;2:041004.
    • (2015) J Med Imaging (Bellingham) , vol.2 , pp. 041004
    • Dilger, S.K.1    Uthoff, J.2    Judisch, A.3
  • 27
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer
    • Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep 2015;5:11044.
    • (2015) Sci Rep , vol.5 , pp. 11044
    • Parmar, C.1    Leijenaar, R.T.2    Grossmann, P.3
  • 28
    • 84884562832 scopus 로고    scopus 로고
    • Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability
    • Leijenaar RT, Carvalho S, Velazquez ER, et al. Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 2013;52:1391-7.
    • (2013) Acta Oncol , vol.52 , pp. 1391-1397
    • Leijenaar, R.T.1    Carvalho, S.2    Velazquez, E.R.3
  • 29
    • 84949801178 scopus 로고    scopus 로고
    • Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer
    • Oliver JA, Budzevich M, Zhang GG, et al. Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer. Transl Oncol 2015;8:524-34.
    • (2015) Transl Oncol , vol.8 , pp. 524-534
    • Oliver, J.A.1    Budzevich, M.2    Zhang, G.G.3
  • 30
    • 84919326536 scopus 로고    scopus 로고
    • Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer
    • Yip S, McCall K, Aristophanous M, et al. Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer. PloS One 2014;9:e115510.
    • (2014) PloS One , vol.9
    • Yip, S.1    McCall, K.2    Aristophanous, M.3
  • 31
    • 84944459873 scopus 로고    scopus 로고
    • Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach
    • Yoon HJ, Sohn I, Cho JH, et al. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach. Medicine (Baltimore) 2015;94:e1753.
    • (2015) Medicine (Baltimore) , vol.94
    • Yoon, H.J.1    Sohn, I.2    Cho, J.H.3
  • 33
    • 84955724184 scopus 로고    scopus 로고
    • External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma
    • Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol 2015;54:1423-9.
    • (2015) Acta Oncol , vol.54 , pp. 1423-1429
    • Leijenaar, R.T.1    Carvalho, S.2    Hoebers, F.J.3
  • 34
    • 84911365015 scopus 로고    scopus 로고
    • Heterogeneity in [18F] fluorodeoxyglucose positron emission tomography/ computed tomography of non-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging
    • van Gómez López O, García Vicente AM, HongueroMartínez AF, et al. Heterogeneity in [18F] fluorodeoxyglucose positron emission tomography/ computed tomography of non-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging. Mol Imaging 2014;13.
    • (2014) Mol Imaging , pp. 13
    • van Gómez López, O.1    García Vicente, A.M.2    HongueroMartínez, A.F.3
  • 35
    • 85028792260 scopus 로고    scopus 로고
    • OC-0205: Prognostic value of pre-RT PET metrics of lymph nodes vs. primary tumor in NSCLC: which holds more information?
    • Carvalho S, Leijenaar RT, Troost EG, et al. OC-0205: Prognostic value of pre-RT PET metrics of lymph nodes vs. primary tumor in NSCLC: which holds more information? Radiother Oncol 2015;115 Supplement 1:S103-S104.
    • (2015) Radiother Oncol , vol.115 , pp. S103-S104
    • Carvalho, S.1    Leijenaar, R.T.2    Troost, E.G.3
  • 36
    • 84919683000 scopus 로고    scopus 로고
    • In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/ CT Imaging
    • Zegers CM, van Elmpt W, Reymen B, et al. In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/ CT Imaging. Clin Cancer Res 2014;20:6389-97.
    • (2014) Clin Cancer Res , vol.20 , pp. 6389-6397
    • Zegers, C.M.1    van Elmpt, W.2    Reymen, B.3
  • 37
    • 84888058346 scopus 로고    scopus 로고
    • Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters
    • Zegers CM, van Elmpt W, Wierts R, et al. Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 2013;109:58-64.
    • (2013) Radiother Oncol , vol.109 , pp. 58-64
    • Zegers, C.M.1    van Elmpt, W.2    Wierts, R.3
  • 38
    • 80052278041 scopus 로고    scopus 로고
    • Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging
    • Dubois LJ, Lieuwes NG, Janssen MH, et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A 2011;108:14620-5.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 14620-14625
    • Dubois, L.J.1    Lieuwes, N.G.2    Janssen, M.H.3
  • 40
    • 77956565862 scopus 로고    scopus 로고
    • Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    • Galavis PE, Hollensen C, Jallow N, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010;49:1012-6.
    • (2010) Acta Oncol , vol.49 , pp. 1012-1016
    • Galavis, P.E.1    Hollensen, C.2    Jallow, N.3
  • 41
    • 84946918741 scopus 로고    scopus 로고
    • Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?
    • Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 2015;42:6784-97.
    • (2015) Med Phys , vol.42 , pp. 6784-6797
    • Fave, X.1    Mackin, D.2    Yang, J.3
  • 42
    • 84938942773 scopus 로고    scopus 로고
    • The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis
    • Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 2015;5:11075.
    • (2015) Sci Rep , vol.5 , pp. 11075
    • Leijenaar, R.T.1    Nalbantov, G.2    Carvalho, S.3
  • 43
    • 84911973434 scopus 로고    scopus 로고
    • Test-retest reproducibility analysis of lung CT image features
    • Balagurunathan Y, Kumar V, Gu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 2014;27:805-23.
    • (2014) J Digit Imaging , vol.27 , pp. 805-823
    • Balagurunathan, Y.1    Kumar, V.2    Gu, Y.3
  • 44
    • 33744799190 scopus 로고    scopus 로고
    • Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography
    • Nagel CC, Bosmans G, Dekker AL, et al. Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Med Phys 2006;33:1840-7.
    • (2006) Med Phys , vol.33 , pp. 1840-1847
    • Nagel, C.C.1    Bosmans, G.2    Dekker, A.L.3
  • 45
    • 79953695633 scopus 로고    scopus 로고
    • Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours
    • van Elmpt W, Hamill J, Jones J, et al. Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 2011;38:843-55.
    • (2011) Eur J Nucl Med Mol Imaging , vol.38 , pp. 843-855
    • van Elmpt, W.1    Hamill, J.2    Jones, J.3
  • 46
    • 77956311269 scopus 로고    scopus 로고
    • Quiescent period respiratory gating for PET/CT
    • Liu C, Alessio A, Pierce L, et al. Quiescent period respiratory gating for PET/CT. Med Phys 2010;37:5037-43.
    • (2010) Med Phys , vol.37 , pp. 5037-5043
    • Liu, C.1    Alessio, A.2    Pierce, L.3
  • 47
    • 48549091398 scopus 로고    scopus 로고
    • Respiratory motion correction in 3-D PET data with advanced optical flow algorithms
    • Dawood M, Buther F, Jiang X, et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 2008;27:1164-75.
    • (2008) IEEE Trans Med Imaging , vol.27 , pp. 1164-1175
    • Dawood, M.1    Buther, F.2    Jiang, X.3
  • 48
    • 84871609385 scopus 로고    scopus 로고
    • Predicting outcomes in radiation oncology--multifactorial decision support systems
    • Lambin P, van Stiphout RG, Starmans MH, et al. Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol 2013;10:27-40.
    • (2013) Nat Rev Clin Oncol , vol.10 , pp. 27-40
    • Lambin, P.1    van Stiphout, R.G.2    Starmans, M.H.3
  • 49
    • 84888072190 scopus 로고    scopus 로고
    • 'Rapid Learning health care in oncology' -an approach towards decision support systems enabling customised radiotherapy'
    • Lambin P, Roelofs E, Reymen B, et al. 'Rapid Learning health care in oncology' -an approach towards decision support systems enabling customised radiotherapy'. Radiother Oncol 2013;109:159-64.
    • (2013) Radiother Oncol , vol.109 , pp. 159-164
    • Lambin, P.1    Roelofs, E.2    Reymen, B.3
  • 51
    • 84955707370 scopus 로고    scopus 로고
    • Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine
    • Lambin P, Zindler J, Vanneste B, et al. Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol 2015;54:1289-300.
    • (2015) Acta Oncol , vol.54 , pp. 1289-1300
    • Lambin, P.1    Zindler, J.2    Vanneste, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.