-
1
-
-
84983265346
-
-
Available online: https://cancerstatisticscenter.cancer.org
-
-
-
-
2
-
-
84857037061
-
Radiomics: extracting more information from medical images using advanced feature analysis
-
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;48:441-6.
-
(2012)
Eur J Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
-
3
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 2015;114:345-50.
-
(2015)
Radiother Oncol
, vol.114
, pp. 345-350
-
-
Coroller, T.P.1
Grossmann, P.2
Hou, Y.3
-
4
-
-
84908211707
-
Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer
-
Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014;90:834-42.
-
(2014)
Int J Radiat Oncol Biol Phys
, vol.90
, pp. 834-842
-
-
Fried, D.V.1
Tucker, S.L.2
Zhou, S.3
-
5
-
-
84884579594
-
Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer
-
Carvalho S, Leijenaar RT, Velazquez ER, et al. Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol 2013;52:1398-404.
-
(2013)
Acta Oncol
, vol.52
, pp. 1398-1404
-
-
Carvalho, S.1
Leijenaar, R.T.2
Velazquez, E.R.3
-
6
-
-
84940869624
-
Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of (18)F-FDG Uptake at PET-Association with Treatment Response and Prognosis
-
Cook GJ, O'Brien ME, Siddique M, et al. Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of (18)F-FDG Uptake at PET-Association with Treatment Response and Prognosis. Radiology 2015;276:883-93.
-
(2015)
Radiology
, vol.276
, pp. 883-893
-
-
Cook, G.J.1
O'Brien, M.E.2
Siddique, M.3
-
7
-
-
84872015239
-
Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
-
Cook GJ, Yip C, Siddique M, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 2013;54:19-26.
-
(2013)
J Nucl Med
, vol.54
, pp. 19-26
-
-
Cook, G.J.1
Yip, C.2
Siddique, M.3
-
8
-
-
84902515123
-
Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
-
Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images. Transl Oncol 2014;7:72-87.
-
(2014)
Transl Oncol
, vol.7
, pp. 72-87
-
-
Balagurunathan, Y.1
Gu, Y.2
Wang, H.3
-
9
-
-
84867139157
-
Radiomics: the process and the challenges
-
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234-48.
-
(2012)
Magn Reson Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
-
10
-
-
84904264664
-
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
-
Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013;3:3529.
-
(2013)
Sci Rep
, vol.3
, pp. 3529
-
-
Velazquez, E.R.1
Parmar, C.2
Jermoumi, M.3
-
11
-
-
80455132144
-
Impact of tumor size and tracer uptake heterogeneity in (18) F-FDG PET and CT non-small cell lung cancer tumor delineation
-
Hatt M, Cheze-le Rest C, van Baardwijk A, et al. Impact of tumor size and tracer uptake heterogeneity in (18) F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011;52:1690-7.
-
(2011)
J Nucl Med
, vol.52
, pp. 1690-1697
-
-
Hatt, M.1
Cheze-le Rest, C.2
van Baardwijk, A.3
-
12
-
-
84904248018
-
Robust Radiomics feature quantification using semiautomatic volumetric segmentation
-
Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 2014;9:e102107.
-
(2014)
PLoS One
, vol.9
-
-
Parmar, C.1
Rios Velazquez, E.2
Leijenaar, R.3
-
13
-
-
84875336246
-
Assessment of tumour size in PET/CT lung cancer studies: PET-and CT-based methods compared to pathology
-
Cheebsumon P, Boellaard R, deRuysscher D, et al. Assessment of tumour size in PET/CT lung cancer studies: PET-and CT-based methods compared to pathology. EJNMMI Res 2012;2:56.
-
(2012)
EJNMMI Res
, vol.2
, pp. 56
-
-
Cheebsumon, P.1
Boellaard, R.2
deRuysscher, D.3
-
15
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006.
-
(2014)
Nat Commun
, vol.5
, pp. 4006
-
-
Aerts, H.J.1
Velazquez, E.R.2
Leijenaar, R.T.3
-
16
-
-
84964335379
-
Radiomic phenotype features predict pathological response in nonsmall cell lung cancer
-
Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in nonsmall cell lung cancer. Radiother Oncol 2016;119:480-6.
-
(2016)
Radiother Oncol
, vol.119
, pp. 480-486
-
-
Coroller, T.P.1
Agrawal, V.2
Narayan, V.3
-
17
-
-
84952898501
-
Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors
-
Fried DV, Mawlawi O, Zhang L, et al. Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors. Radiology 2016;278:214-22.
-
(2016)
Radiology
, vol.278
, pp. 214-222
-
-
Fried, D.V.1
Mawlawi, O.2
Zhang, L.3
-
18
-
-
84975256387
-
Development of a nomogram combining clinical staging with F-FDG PET/CT image features in non-small-cell lung cancer stage I-III
-
Desseroit MC, Visvikis D, Tixier F, et al. Development of a nomogram combining clinical staging with F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging 2016;43:1477-85.
-
(2016)
Eur J Nucl Med Mol Imaging
, vol.43
, pp. 1477-1485
-
-
Desseroit, M.C.1
Visvikis, D.2
Tixier, F.3
-
19
-
-
84983262746
-
Early variation of FDG-PET radiomics features in NSCLC is related to overall survival -the "delta radiomics" concept
-
Carvalho S, Leijenaar RT, Troost EG, et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival -the "delta radiomics" concept. Radiother Oncol 2016;118 Supplement 1:S20-S21.
-
(2016)
Radiother Oncol
, vol.118
, pp. S20-S21
-
-
Carvalho, S.1
Leijenaar, R.T.2
Troost, E.G.3
-
20
-
-
84975199794
-
FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy
-
Lovinfosse P, Janvary ZL, Coucke P, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging 2016;43:1453-60.
-
(2016)
Eur J Nucl Med Mol Imaging
, vol.43
, pp. 1453-1460
-
-
Lovinfosse, P.1
Janvary, Z.L.2
Coucke, P.3
-
21
-
-
84969326691
-
Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment
-
Mattonen SA, Palma DA, Johnson C, et al. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment. Int J Radiat Oncol Biol Phys 2016;94:1121-8.
-
(2016)
Int J Radiat Oncol Biol Phys
, vol.94
, pp. 1121-1128
-
-
Mattonen, S.A.1
Palma, D.A.2
Johnson, C.3
-
22
-
-
84977940359
-
Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy
-
Mattonen SA, Tetar S, Palma DA, et al. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging (Bellingham) 2015;2:041010.
-
(2015)
J Med Imaging (Bellingham)
, vol.2
, pp. 041010
-
-
Mattonen, S.A.1
Tetar, S.2
Palma, D.A.3
-
23
-
-
84925348152
-
Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
-
Cunliffe A, Armato SG 3rd, Castillo R, et al. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 2015;91:1048-56.
-
(2015)
Int J Radiat Oncol Biol Phys
, vol.91
, pp. 1048-1056
-
-
Cunliffe, A.1
Armato, S.G.2
Castillo, R.3
-
24
-
-
84861459453
-
Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival
-
Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 2012;22:796-802.
-
(2012)
Eur Radiol
, vol.22
, pp. 796-802
-
-
Ganeshan, B.1
Panayiotou, E.2
Burnand, K.3
-
25
-
-
84953302802
-
A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images
-
Dhara AK, Mukhopadhyay S, Dutta A, et al. A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J Digit Imaging 2016;29:466-75.
-
(2016)
J Digit Imaging
, vol.29
, pp. 466-475
-
-
Dhara, A.K.1
Mukhopadhyay, S.2
Dutta, A.3
-
26
-
-
84983253955
-
Improved pulmonary nodule classification utilizing quantitative lung parenchyma features
-
Dilger SK, Uthoff J, Judisch A, et al. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features. J Med Imaging (Bellingham) 2015;2:041004.
-
(2015)
J Med Imaging (Bellingham)
, vol.2
, pp. 041004
-
-
Dilger, S.K.1
Uthoff, J.2
Judisch, A.3
-
27
-
-
84938850455
-
Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer
-
Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep 2015;5:11044.
-
(2015)
Sci Rep
, vol.5
, pp. 11044
-
-
Parmar, C.1
Leijenaar, R.T.2
Grossmann, P.3
-
28
-
-
84884562832
-
Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability
-
Leijenaar RT, Carvalho S, Velazquez ER, et al. Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 2013;52:1391-7.
-
(2013)
Acta Oncol
, vol.52
, pp. 1391-1397
-
-
Leijenaar, R.T.1
Carvalho, S.2
Velazquez, E.R.3
-
29
-
-
84949801178
-
Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer
-
Oliver JA, Budzevich M, Zhang GG, et al. Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer. Transl Oncol 2015;8:524-34.
-
(2015)
Transl Oncol
, vol.8
, pp. 524-534
-
-
Oliver, J.A.1
Budzevich, M.2
Zhang, G.G.3
-
30
-
-
84919326536
-
Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer
-
Yip S, McCall K, Aristophanous M, et al. Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer. PloS One 2014;9:e115510.
-
(2014)
PloS One
, vol.9
-
-
Yip, S.1
McCall, K.2
Aristophanous, M.3
-
31
-
-
84944459873
-
Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach
-
Yoon HJ, Sohn I, Cho JH, et al. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach. Medicine (Baltimore) 2015;94:e1753.
-
(2015)
Medicine (Baltimore)
, vol.94
-
-
Yoon, H.J.1
Sohn, I.2
Cho, J.H.3
-
33
-
-
84955724184
-
External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma
-
Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol 2015;54:1423-9.
-
(2015)
Acta Oncol
, vol.54
, pp. 1423-1429
-
-
Leijenaar, R.T.1
Carvalho, S.2
Hoebers, F.J.3
-
34
-
-
84911365015
-
Heterogeneity in [18F] fluorodeoxyglucose positron emission tomography/ computed tomography of non-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging
-
van Gómez López O, García Vicente AM, HongueroMartínez AF, et al. Heterogeneity in [18F] fluorodeoxyglucose positron emission tomography/ computed tomography of non-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging. Mol Imaging 2014;13.
-
(2014)
Mol Imaging
, pp. 13
-
-
van Gómez López, O.1
García Vicente, A.M.2
HongueroMartínez, A.F.3
-
35
-
-
85028792260
-
OC-0205: Prognostic value of pre-RT PET metrics of lymph nodes vs. primary tumor in NSCLC: which holds more information?
-
Carvalho S, Leijenaar RT, Troost EG, et al. OC-0205: Prognostic value of pre-RT PET metrics of lymph nodes vs. primary tumor in NSCLC: which holds more information? Radiother Oncol 2015;115 Supplement 1:S103-S104.
-
(2015)
Radiother Oncol
, vol.115
, pp. S103-S104
-
-
Carvalho, S.1
Leijenaar, R.T.2
Troost, E.G.3
-
36
-
-
84919683000
-
In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/ CT Imaging
-
Zegers CM, van Elmpt W, Reymen B, et al. In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/ CT Imaging. Clin Cancer Res 2014;20:6389-97.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 6389-6397
-
-
Zegers, C.M.1
van Elmpt, W.2
Reymen, B.3
-
37
-
-
84888058346
-
Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters
-
Zegers CM, van Elmpt W, Wierts R, et al. Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 2013;109:58-64.
-
(2013)
Radiother Oncol
, vol.109
, pp. 58-64
-
-
Zegers, C.M.1
van Elmpt, W.2
Wierts, R.3
-
38
-
-
80052278041
-
Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging
-
Dubois LJ, Lieuwes NG, Janssen MH, et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A 2011;108:14620-5.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 14620-14625
-
-
Dubois, L.J.1
Lieuwes, N.G.2
Janssen, M.H.3
-
40
-
-
77956565862
-
Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
-
Galavis PE, Hollensen C, Jallow N, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010;49:1012-6.
-
(2010)
Acta Oncol
, vol.49
, pp. 1012-1016
-
-
Galavis, P.E.1
Hollensen, C.2
Jallow, N.3
-
41
-
-
84946918741
-
Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?
-
Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 2015;42:6784-97.
-
(2015)
Med Phys
, vol.42
, pp. 6784-6797
-
-
Fave, X.1
Mackin, D.2
Yang, J.3
-
42
-
-
84938942773
-
The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis
-
Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 2015;5:11075.
-
(2015)
Sci Rep
, vol.5
, pp. 11075
-
-
Leijenaar, R.T.1
Nalbantov, G.2
Carvalho, S.3
-
43
-
-
84911973434
-
Test-retest reproducibility analysis of lung CT image features
-
Balagurunathan Y, Kumar V, Gu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging 2014;27:805-23.
-
(2014)
J Digit Imaging
, vol.27
, pp. 805-823
-
-
Balagurunathan, Y.1
Kumar, V.2
Gu, Y.3
-
44
-
-
33744799190
-
Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography
-
Nagel CC, Bosmans G, Dekker AL, et al. Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Med Phys 2006;33:1840-7.
-
(2006)
Med Phys
, vol.33
, pp. 1840-1847
-
-
Nagel, C.C.1
Bosmans, G.2
Dekker, A.L.3
-
45
-
-
79953695633
-
Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours
-
van Elmpt W, Hamill J, Jones J, et al. Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 2011;38:843-55.
-
(2011)
Eur J Nucl Med Mol Imaging
, vol.38
, pp. 843-855
-
-
van Elmpt, W.1
Hamill, J.2
Jones, J.3
-
46
-
-
77956311269
-
Quiescent period respiratory gating for PET/CT
-
Liu C, Alessio A, Pierce L, et al. Quiescent period respiratory gating for PET/CT. Med Phys 2010;37:5037-43.
-
(2010)
Med Phys
, vol.37
, pp. 5037-5043
-
-
Liu, C.1
Alessio, A.2
Pierce, L.3
-
47
-
-
48549091398
-
Respiratory motion correction in 3-D PET data with advanced optical flow algorithms
-
Dawood M, Buther F, Jiang X, et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 2008;27:1164-75.
-
(2008)
IEEE Trans Med Imaging
, vol.27
, pp. 1164-1175
-
-
Dawood, M.1
Buther, F.2
Jiang, X.3
-
48
-
-
84871609385
-
Predicting outcomes in radiation oncology--multifactorial decision support systems
-
Lambin P, van Stiphout RG, Starmans MH, et al. Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol 2013;10:27-40.
-
(2013)
Nat Rev Clin Oncol
, vol.10
, pp. 27-40
-
-
Lambin, P.1
van Stiphout, R.G.2
Starmans, M.H.3
-
49
-
-
84888072190
-
'Rapid Learning health care in oncology' -an approach towards decision support systems enabling customised radiotherapy'
-
Lambin P, Roelofs E, Reymen B, et al. 'Rapid Learning health care in oncology' -an approach towards decision support systems enabling customised radiotherapy'. Radiother Oncol 2013;109:159-64.
-
(2013)
Radiother Oncol
, vol.109
, pp. 159-164
-
-
Lambin, P.1
Roelofs, E.2
Reymen, B.3
-
51
-
-
84955707370
-
Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine
-
Lambin P, Zindler J, Vanneste B, et al. Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol 2015;54:1289-300.
-
(2015)
Acta Oncol
, vol.54
, pp. 1289-1300
-
-
Lambin, P.1
Zindler, J.2
Vanneste, B.3
|