메뉴 건너뛰기




Volumn 13, Issue 1, 2016, Pages 344-354

Integration of data fusion methodology and degradation modeling process to improve prognostics

Author keywords

Data fusion; Degradation modeling; Prognostics; Remaining life prediction

Indexed keywords

DATA FUSION; GAS TURBINES; HEALTH; STOCHASTIC SYSTEMS; SYSTEMS ENGINEERING;

EID: 84983071001     PISSN: 15455955     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASE.2014.2349733     Document Type: Article
Times cited : (134)

References (27)
  • 2
    • 0027595086 scopus 로고
    • Using degradation measures to estimate a time-to-failure distribution
    • J. C. Lu and W. Meeker, "Using degradation measures to estimate a time-to-failure distribution," Technometrics, vol. 35, no. 2, pp. 161-174, 1993.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 161-174
    • Lu, J.C.1    Meeker, W.2
  • 3
    • 19044395347 scopus 로고    scopus 로고
    • Residual-life distributions from component degradation signals: A Bayesian approach
    • N. Gebraeel, M. Lawley, R. Li, and J. K. Ryan, "Residual-life distributions from component degradation signals: A Bayesian approach," IIE Trans., vol. 37, no. 6, pp. 543-557, 2005.
    • (2005) IIE Trans. , vol.37 , Issue.6 , pp. 543-557
    • Gebraeel, N.1    Lawley, M.2    Li, R.3    Ryan, J.K.4
  • 8
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • D. L. Hall and J. Llinas, "An introduction to multisensor data fusion," Proc. IEEE, vol. 85, pp. 6-23, 1997.
    • (1997) Proc. IEEE , vol.85 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 10
    • 4944256361 scopus 로고    scopus 로고
    • Optical wear assessment system for grinding tools
    • Jul.
    • T. Heger and M. Pandit, "Optical wear assessment system for grinding tools," J. Electron. Imag., vol. 13, pp. 450-461, Jul. 2004.
    • (2004) J. Electron. Imag. , vol.13 , pp. 450-461
    • Heger, T.1    Pandit, M.2
  • 11
    • 19144364093 scopus 로고    scopus 로고
    • Aircraft turbofan engine health estimation using constrained Kalman filtering
    • Apr.
    • D. Simon and D. L. Simon, "Aircraft turbofan engine health estimation using constrained Kalman filtering," ASME J. Eng. Gas Turbines Power, vol. 127, pp. 323-328, Apr. 2005.
    • (2005) ASME J. Eng. Gas Turbines Power , vol.127 , pp. 323-328
    • Simon, D.1    Simon, D.L.2
  • 12
    • 34848918450 scopus 로고    scopus 로고
    • Hybrid kalman filter approach for aircraft engine in-flight diagnostics: Sensor fault detection case
    • July
    • T. Kobayashi and D. L. Simon, "Hybrid kalman filter approach for aircraft engine in-flight diagnostics: Sensor fault detection case," J. Eng. Gas Turbines Power, vol. 129, no. 3, pp. 746-754, July 2007.
    • (2007) J. Eng. Gas Turbines Power , vol.129 , Issue.3 , pp. 746-754
    • Kobayashi, T.1    Simon, D.L.2
  • 13
    • 54549088841 scopus 로고    scopus 로고
    • Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive extended Kalman filter algorithm
    • Mar.
    • K. Salahshoor, M. Mosallaei, and M. Bayat, "Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive extended Kalman filter algorithm," Meas., vol. 41, pp. 1059-1076, Mar. 2008.
    • (2008) Meas. , vol.41 , pp. 1059-1076
    • Salahshoor, K.1    Mosallaei, M.2    Bayat, M.3
  • 14
    • 33847091776 scopus 로고    scopus 로고
    • Prognostic information fusion for constant load systems
    • K. Goebel and P. Bonissone, "Prognostic information fusion for constant load systems," in Proc. 7th Annu. Conf. Inf. Fusion, 2005, vol. 2, pp. 1247-1255.
    • (2005) Proc. 7th Annu. Conf. Inf. Fusion , vol.2 , pp. 1247-1255
    • Goebel, K.1    Bonissone, P.2
  • 15
    • 84901401889 scopus 로고    scopus 로고
    • Sensor fusion for vehicle health monitoring and degradation detection
    • Annapolis, MD, USA
    • Q. Sun, "Sensor fusion for vehicle health monitoring and degradation detection," in Proc. 5th Int. Conf. Inf. Fusion, Annapolis, MD, USA, 2002, pp. 1422-1427.
    • (2002) Proc. 5th Int. Conf. Inf. Fusion , pp. 1422-1427
    • Sun, Q.1
  • 16
    • 67650712207 scopus 로고    scopus 로고
    • Comparison of prognostic algorithms for estimating remaining useful life of batteries
    • B. Saha, K. Goebel, and J. Christophersen, "Comparison of prognostic algorithms for estimating remaining useful life of batteries," Trans. Inst. Meas. Control, vol. 31, pp. 293-308, 2009.
    • (2009) Trans. Inst. Meas. Control , vol.31 , pp. 293-308
    • Saha, B.1    Goebel, K.2    Christophersen, J.3
  • 17
    • 33646534620 scopus 로고    scopus 로고
    • A reviewon machinery diagnostics and prognostics implementing condition-based maintenance
    • A. K. S. Jardine, D. Lin, and D. Banjevic, "A reviewon machinery diagnostics and prognostics implementing condition-based maintenance," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483-1510, 2006.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 18
    • 85152316478 scopus 로고    scopus 로고
    • Data fusion for developing predictive diagnostics for electromechanical systems
    • Boca Raton, FL, USA: CRC Press
    • C. S. Byington and A. K. Garga, "Data fusion for developing predictive diagnostics for electromechanical systems," in Handbook of Multisensor Data Fusion. Boca Raton, FL, USA: CRC Press, 2001.
    • (2001) Handbook of Multisensor Data Fusion.
    • Byington, C.S.1    Garga, A.K.2
  • 19
    • 84860375483 scopus 로고    scopus 로고
    • Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    • C. Hu, B. D. Youn, P.Wang, and J. T. Yoon, "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Rel. Eng. Sys. Safety, vol. 103, pp. 120-135, 2012.
    • (2012) Rel. Eng. Sys. Safety , vol.103 , pp. 120-135
    • Hu, C.1    Youn, B.D.2    Wang, P.3    Yoon, J.T.4
  • 20
    • 84892606646 scopus 로고    scopus 로고
    • A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis
    • Jul.
    • K. Liu, N. Gebraeel, and J. Shi, "A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis," IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 652-664, Jul. 2013.
    • (2013) IEEE Trans. Autom. Sci. Eng. , vol.10 , Issue.3 , pp. 652-664
    • Liu, K.1    Gebraeel, N.2    Shi, J.3
  • 21
    • 0034655050 scopus 로고    scopus 로고
    • A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance
    • W. B. Wang, "A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance," Int. J. Prod. Res., vol. 38, no. 6, pp. 1425-1436, 2000.
    • (2000) Int. J. Prod. Res. , vol.38 , Issue.6 , pp. 1425-1436
    • Wang, W.B.1
  • 22
    • 0031276315 scopus 로고    scopus 로고
    • Statistical inference of a time-to-failure distribution derived from linear degradation data
    • J. C. Lu, J. Park, and Q. Yang, "Statistical inference of a time-to-failure distribution derived from linear degradation data," Technometrics, vol. 39, no. 4, pp. 391-400, 1997.
    • (1997) Technometrics , vol.39 , Issue.4 , pp. 391-400
    • Lu, J.C.1    Park, J.2    Yang, Q.3
  • 23
    • 2942659638 scopus 로고    scopus 로고
    • Life distributions from component degradation signals: A neural net approach
    • Jun.
    • N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, "Life distributions from component degradation signals: A neural net approach," IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 694-700, Jun. 2004.
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , Issue.3 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3    Parmeshwaran, V.4
  • 24
    • 33750051081 scopus 로고    scopus 로고
    • Sensory-updated residual life distributions for components with exponential degradation patterns
    • Oct.
    • N. Gebraeel, "Sensory-updated residual life distributions for components with exponential degradation patterns," IEEE Trans. Autom. Sci. Eng., vol. 3, pp. 382-393, Oct. 2006.
    • (2006) IEEE Trans. Autom. Sci. Eng. , vol.3 , pp. 382-393
    • Gebraeel, N.1
  • 25
    • 73849102487 scopus 로고    scopus 로고
    • Prognostics-based identification of the top-units in a fleet
    • Jan.
    • N. Gebraeel, "Prognostics-based identification of the top-units in a fleet," IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 37-48, Jan. 2010.
    • (2010) IEEE Trans. Autom. Sci. Eng. , vol.7 , Issue.1 , pp. 37-48
    • Gebraeel, N.1
  • 26
    • 79954507840 scopus 로고    scopus 로고
    • Data-driven fault detection in aircraft engines with noisy sensor measurements
    • Aug.
    • S. Sarkar, X. Jin, and A. Ray, "Data-driven fault detection in aircraft engines with noisy sensor measurements," ASME J. Eng. Gas Turbines Power, vol. 133, p. 081602, Aug. 2011.
    • (2011) ASME J. Eng. Gas Turbines Power , vol.133 , pp. 081602
    • Sarkar, S.1    Jin, X.2    Ray, A.3
  • 27
    • 69249134301 scopus 로고    scopus 로고
    • User's guide for the commercial modular aero-propulsion system simulation (C-MAPSS)
    • D. Frederick, J. DeCastro, and J. Litt, "User's guide for the commercial modular aero-propulsion system simulation (C-MAPSS)," NASA/ARL Tech. Manual TM2007-215026, 2007.
    • (2007) NASA/ARL Tech. Manual TM2007-215026
    • Frederick, D.1    DeCastro, J.2    Litt, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.